Nothing
#' Case-control data on alcohol and breast cancer risk
#'
#' @name cc_ex
#' @description The dataset reports the summarized dose-response results from a case-control study
#' on alcohol and breast cancer, first presented by Rohan and McMichael.
#' @docType data
#' @format A data frame with 4 observations on the following 10 variables:
#' \tabular{ll}{
#' \code{gday} \tab label for exposure levels.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{case} \tab number of cases for each exposure level.\cr
#' \code{control} \tab number of controls for each exposure level.\cr
#' \code{n} \tab total number of subjects for each exposure level.\cr
#' \code{crudeor} \tab unadjusted odds ratios for each exposure level.\cr
#' \code{adjrr} \tab adjusted odds ratios for each exposure level.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted odds ratios.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted odds ratios.\cr
#' \code{logrr} \tab natural logarithm of the adjusted odds ratios.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#' Rohan, T. E., McMichael, A. J. (1988). Alcohol consumption and risk op breast cancer. International journal of cancer, 41(5), 695-699.
#'
#' Greenland, S., Longnecker, M. P. (1992). Methods for trend estimation from summarized dose-response data, with applications to meta-analysis.
#' American journal of epidemiology, 135(11), 1301-1309.
#'
#' @keywords data
NULL
#' Cumulative incidence data on high-fat dairy food and colorectal cancer risk
#'
#' @name ci_ex
#' @description The dataset reports the summarized dose-response results from a cumlative-incidence study
#' on high-fat dairy food intake and risk of colorectal cancer, first presented by Larsson, Bergkvist, and Wolk (2005).
#' @docType data
#' @format A data frame with 5 observations on the following 8 variables:
#' \tabular{ll}{
#' \code{dose} \tab assigned dose levels.\cr
#' \code{case} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects for each exposure level.\cr
#' \code{adjrr} \tab adjusted risk ratios for each exposure level.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted risk ratios.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted risk ratios.\cr
#' \code{logrr} \tab natural logarithm of adjusted risk ratios.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk ratios.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Larsson, S. C., L. Bergkvist, and A. Wolk. (2005). High-fat dairy food and conjugated
#' linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography
#' Cohort. American Journal of Clinical Nutrition 82: 894-900.
#'
#' Greenland, S., Longnecker, M. P. (1992). Methods for trend estimation from summarized dose-response data, with applications to meta-analysis.
#' American journal of epidemiology, 135(11), 1301-1309.
#'
#' @keywords data
NULL
#' Incidence-rate data on fiber intake and coronary heart disease risk
#'
#' @name ir_ex
#' @description The dataset reports the summarized dose-response results from incidence-rate data
#' investigating the association between the long-term intake of dietary fiber and
#' risk of coronary heart disease among women, first presented by Wolk et al. (1999)
#' @docType data
#' @format A data frame with 5 observations on the following 8 variables:
#' \tabular{ll}{
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects for each exposure level.\cr
#' \code{adjrr} \tab adjusted incidence rate ratios for each exposure level.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted incidence rate ratios.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted incidence rate ratios.\cr
#' \code{logrr} \tab natural logarithm of adjusted incidence rate ratios.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted incidence rate ratios.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#' Wolk, A., J. E. Manson, M. J. Stampfer, G. A. Colditz, F. Hu, F. E. Speizer, C. H. Hennekens, and W. C. Willett. 1999.
#' Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. Journal of the American Medical Association 281: 1998-2004.
#'
#' Greenland, S., Longnecker, M. P. (1992). Methods for trend estimation from summarized dose-response data, with applications to meta-analysis.
#' American journal of epidemiology, 135(11), 1301-1309.
#'
#' @keywords data
NULL
#' Nine studies on the relation between milk consumption and ovarian cancer
#'
#' @name milk_ov
#' @description The dataset reports the summarized dose-response results from nine studies on the relation between milk consumption
#' and ovarian cancer.
#'
#' @docType data
#' @format A data frame with 37 observations on the following 12 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{case} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ir" or "cc") or person-years (type = "ir") for each exposure level.\cr
#' \code{rr} \tab adjusted risk estimates.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Larsson, S. C., N. Orsini, and A. Wolk. 2005. Milk, milk products and lactose intake and ovarian cancer risk: A meta-analysis of epidemiological studies.
#' International Journal of Cancer 118: 431-441.
#'
#' Greenland, S., Longnecker, M. P. (1992). Methods for trend estimation from summarized dose-response data, with applications to meta-analysis.
#' American journal of epidemiology, 135(11), 1301-1309.
#'
#' @keywords data
NULL
#' Twenty-two case-control studies on the relation between oral contraceptives use and breast cancer
#'
#' @name oc_breast
#' @description The dataset reports the summarized dose-response results from twenty-two case-control
#' studies on the relation between oral contraceptives use and breast cancer
#'
#' @docType data
#' @format A data frame with 113 observations on the following 14 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{duration} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ir" or "cc") or person-years (type = "ir") for each exposure level.\cr
#' \code{or} \tab adjusted odds ratios.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted odds ratios.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted odds ratios.\cr
#' \code{logor} \tab natural logarithm of the adjusted odds ratios.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted odds ratios.\cr
#' \code{menopause} \tab indicator variable for a study that included postmenopausal women (1 = yes).\cr
#' \code{period} \tab final year of case accrual (surrogate for the changing formulations of oral contraceptives over time). \cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Berlin JA, Longnecker MP, Greenland S. Meta-analysis of epidemiologic dose-response data.
#' Epidemiology. 1993 May 1:218-28.
#' @keywords data
NULL
#' Six published studies on the relation between alcohol intake and cardiovascular disease risk.
#'
#' @name alcohol_cvd
#' @description The dataset reports the summarized dose-response results from six observational
#' studies on the relation between alcohol intake and vascular disease risk. Four are case-control studies,
#' two prospective (cumulative-incidence data).
#' @docType data
#' @format A data frame with 25 observations on the following 8 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author of the study.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects for each exposure level.\cr
#' \code{logrr} \tab natural logarithm of the adjusted "relative risks".\cr
#' \code{se} \tab standard error for the logarithm of the adjusted "relative risks".\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#' Liu, Q., Cook, N. R., Bergstrom, A., Hsieh, C. C. (2009). A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear
#' dose-response data. Computational Statistics & Data Analysis, 53(12), 4157-4167.
#'
#' @keywords data
NULL
#' Four case-control studies on the relation between Body Mass Index and renal cell cancer
#'
#' @name bmi_rc
#' @description The dataset reports the summarized dose-response results from four cases-control studies on the relation
#' Body Mass Index and renal cell cancer
#'
#' @docType data
#' @format A data frame with 33 observations on the following 13 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author and year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{interval} \tab intervals for the categories of bmi.\cr
#' \code{bmi} \tab assigned bmi levels.\cr
#' \code{case} \tab number of cases for each exposure level.\cr
#' \code{control} \tab number of controls for each exposure level.\cr
#' \code{n} \tab total number of subjects for each exposure level.\cr
#' \code{or} \tab adjusted odds ratios for each exposure level.\cr
#' \code{lb_or} \tab lower bound for the confidence limits of the adjusted odds ratios.\cr
#' \code{ub_or} \tab upper bound for the confidence limits of the adjusted odds ratios.\cr
#' \code{logor} \tab natural logarithm of the adjusted odds ratios.\cr
#' \code{se_logor} \tab standard error for the logarithm of the adjusted odds ratios.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#' Liu, Q., Cook, N. R., Bergstrom, A., Hsieh, C. C. (2009). A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear
#' dose-response data. Computational Statistics & Data Analysis, 53(12), 4157-4167.
#'
#' @keywords data
NULL
#' Eight published studies on the relation between alcohol intake and colon-rectal cancer.
#'
#' @name alcohol_crc
#' @description The dataset reports the summarized dose-response results from eight prospective
#' studies on the relation between alcohol intake and colorectal cancer risk.
#' @docType data
#' @format A data frame with 48 observations on the following 7 variables:
#' \tabular{ll}{
#' \code{id} \tab label for author's names (id variable).\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{peryears} \tab amount of person-time for each exposure level.\cr
#' \code{logrr} \tab natural logarithm of the adjusted "relative risks".\cr
#' \code{se} \tab standard error for the logarithm of the adjusted "relative risks".\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#' Orsini, N., Li, R., Wolk, A., Khudyakov, P., Spiegelman, D. (2012). Meta-analysis for linear and nonlinear dose-response relations: examples,
#' an evaluation of approximations, and software. American journal of epidemiology, 175(1), 66-73.
#'
#' @keywords data
NULL
#' Four published studies on the relation between alcohol intake and lung cancer.
#'
#' @name alcohol_lc
#' @description The dataset reports the summarized dose-response results from four prospective
#' studies on the relation between alcohol intake and lunger cancer.
#' @docType data
#' @format A data frame with 20? observations on the following 7 variables:
#' \tabular{ll}{
#' \code{id} \tab label for author's names (id variable).\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{peryears} \tab amount of person-time for each exposure level.\cr
#' \code{logrr} \tab natural logarithm of the adjusted "relative risks".\cr
#' \code{se} \tab standard error for the logarithm of the adjusted "relative risks".\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#' Orsini, N., Li, R., Wolk, A., Khudyakov, P., Spiegelman, D. (2012). Meta-analysis for linear and nonlinear dose-response relations: examples,
#' an evaluation of approximations, and software. American journal of epidemiology, 175(1), 66-73.
#'
#' @keywords data
NULL
#' Five clinical trials on the relation between aripiprazole and schizophrenia
#'
#' @name ari
#' @description The dataset reports the summarized dose-response results from five clinical trials on the relation between different levels of aripiprazole
#' and severety of schizophrenia measured usign the PANSS medical score.
#'
#' @docType data
#' @format A data frame with 18 observations on the following 6 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author of the studies.\cr
#' \code{dose} \tab assigned dose level of aripiprazole (0 for placebo group).\cr
#' \code{y} \tab outcome variable: change in PANNS score after and before treatment.\cr
#' \code{sd} \tab standard deviation of y for each exposure level.\cr
#' \code{n} \tab total number of subjects for each exposure level.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#' Crippa, A., Orsini, N. Dose-response meta-analysis of differences in means. BMC medical research methodology. 2016 Aug 2;16(1):91.
#'
#' @keywords data
NULL
#' Eleven prospective studies on the relation between coffee consumption and stroke risk
#'
#' @name coffee_stroke
#' @description The dataset reports the summarized dose-response results from eleven prospective studies on the relation between coffee consumption
#' and risk of stroke.
#'
#' @docType data
#' @format A data frame with 68 observations on the following 12 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author of the studies.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ci") or person-years (type = "ir") for each exposure level.\cr
#' \code{rr} \tab adjusted risk estimates for each exposure level.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' \code{nordic} \tab indicator variable for the study to be conducted in the nordic countries (1 = yes).\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Larsson, S. C., Orsini, N. (2011). Coffee consumption and risk of stroke: a dose-response
#' meta-analysis of prospective studies. American journal of epidemiology, 174(9), 993-1001.
#'
#' @keywords data
NULL
#' Twenty-one prospective studies on the relation between coffee consumption and all-cause mortality
#'
#' @name coffee_mort
#' @description The dataset reports the summarized dose-response results from twenty-one prospective studies on the relation between coffee consumption
#' and all-cause mortality.
#'
#' @docType data
#' @format A data frame with 109 observations on the following 11 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ci") or person-years (type = "ir") for each exposure level.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' \code{gender} \tab factor variable for the gender of the partecipants.\cr
#' \code{area} \tab factor variable for the study location.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N. Coffee Consumption and Mortality from All Causes, Cardiovascular Disease, and Cancer:
#' A Dose-Response Meta-Analysis. Am J Epidemiol. 2014 Aug 24. pii: kwu194.
#'
#' @keywords data
NULL
#' Thirteen prospective studies on the relation between coffee consumption and cardiovascular mortality
#'
#' @name coffee_cvd
#' @description The dataset reports the summarized dose-response results from thirteen prospective studies on the relation between coffee consumption
#' and cardiovascular mortality.
#'
#' @docType data
#' @format A data frame with 100 observations on the following 9 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ci") or person-years (type = "ir") for each exposure level.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N. Coffee Consumption and Mortality from All Causes, Cardiovascular Disease, and Cancer:
#' A Dose-Response Meta-Analysis. Am J Epidemiol. 2014 Aug 24. pii: kwu194.
#'
#' @keywords data
NULL
#' Eight prospective studies on the relation between coffee consumption and cancer mortality
#'
#' @name coffee_cancer
#' @description The dataset reports the summarized dose-response results from eight prospective studies on the relation between coffee consumption
#' and cancer mortality.
#'
#' @docType data
#' @format A data frame with 59 observations on the following 11 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ci") or person-years (type = "ir") for each exposure level.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' \code{gender} \tab factor variable for the gender of the partecipants.\cr
#' \code{area} \tab factor variable for the study location.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N. Coffee Consumption and Mortality from All Causes, Cardiovascular Disease, and Cancer:
#' A Dose-Response Meta-Analysis. Am J Epidemiol. 2014 Aug 24. pii: kwu194.
#'
#' @keywords data
NULL
#' Eleven prospective studies on the relation between milk consumption and all-cause mortality
#'
#' @name milk_mort
#' @description The dataset reports the summarized dose-response results from eleven prospective studies on the relation between milk consumption
#' and all-cause mortality.
#'
#' @docType data
#' @format A data frame with 50 observations on the following 12 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ci") or person-years (type = "ir") for each exposure level.\cr
#' \code{rr} \tab adjusted risk estimates.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Larsson SC, Crippa A, Orsini N, Wolk A, Michaelsson K. Milk consumption and mortality from all causes,
#' cardiovascular disease, and cancer: a systematic review and meta-analysis. Nutrients. 2015 Sep 11;7(9):7749-63.
#'
#' @keywords data
NULL
#' Fourteen case-control studies on the relation between alcohol consumption and esophageal cancer
#' @name alcohol_esoph
#' @description The dataset reports the summarized dose-response results from fourteen case-control studies on the relation between alcohol consumption
#' and esophageal squamous cell carcinoma.
#'
#' @docType data
#' @format A data frame with 63 observations on the following 8 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{type} \tab code for study design.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects for each exposure level.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{logrr} \tab natural logarithm of the adjusted odds ratio.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted odds ratio\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Rota M, Bellocco R, Scotti L, Tramacere I, Jenab M, Corrao G, La Vecchia C, Boffetta P,
#' Bagnardi V. Random-effects meta-regression models for studying nonlinear dose-response
#' relationship, with an application to alcohol and esophageal squamous cell carcinoma.
#' Statistics in medicine. 2010 Nov 20;29(26):2679-87.
#'
#' @keywords data
NULL
#' Six studies on the relation between fish consumption and rheumatoid arthritis risk
#' @name fish_ra
#' @description The dataset reports the summarized dose-response results from six studies on the relation between fish consumption
#' and rheumatoid arthritis risk
#'
#' @docType data
#' @format A data frame with 22 observations on the following 12 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ci") or person-years (type = "ir") for each exposure level.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{rr} \tab adjusted risk estimates.\cr
#' \code{lrr} \tab lower bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{urr} \tab upper bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{logrr} \tab natural logarithm of the adjusted odds ratio.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted odds ratio\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Di Giuseppe D, Crippa A, Orsini N, Wolk A. Fish consumption and risk of rheumatoid
#' arthritis: a dose-response meta-analysis. Arthritis research & therapy.
#' 2014 Sep 30;16(5):446.
#'
#' @keywords data
NULL
#' Twelve studies on the relation between red meat and bladder cancer
#'
#' @name red_bc
#' @description The dataset reports the summarized dose-response results from twelve studies on the relation between red meat consumption
#' and bladder cancer.
#'
#' @docType data
#' @format A data frame with 74 observations on the following 15 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose0} \tab original assigned dose levels, with unit of measurement defined in the "unit" column.\cr
#' \code{dose} \tab assigned dose levels (converted (if needed) in gm/day).\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ci" or "cc") or person-years (type = "ir") for each exposure level.\cr
#' \code{rr} \tab adjusted risk estimates.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' \code{area} \tab geographical area of the published study.\cr
#' \code{unit} \tab unit of measurement for red meat consumption (for dose0).\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Crippa A, Larsson SC, Discacciati A, Wolk A, Orsini N. Red and processed meat consumption and
#' risk of bladder cancer: a dose-response meta-analysis of epidemiological studies.
#' European journal of nutrition. 2016 Dec 22:1-3.
#'
#' @keywords data
NULL
#' Ten studies on the relation between processed meat and bladder cancer
#'
#' @name process_bc
#' @description The dataset reports the summarized dose-response results from ten studies on the relation between processed meat consumption
#' and bladder cancer.
#'
#' @docType data
#' @format A data frame with 73 observations on the following 15 variables:
#' \tabular{ll}{
#' \code{id} \tab id of the studies included in the analysis.\cr
#' \code{author} \tab names of the first author.\cr
#' \code{year} \tab year of publication.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose0} \tab original assigned dose levels, with unit of measurement defined in the "unit" column.\cr
#' \code{dose} \tab assigned dose levels (converted (if needed) in gm/day).\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects (type = "ci" or "cc") or person-years (type = "ir") for each exposure level.\cr
#' \code{rr} \tab adjusted risk estimates.\cr
#' \code{lb} \tab lower bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{ub} \tab upper bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' \code{area} \tab geographical area of the published study.\cr
#' \code{unit} \tab unit of measurement for red meat consumption (for dose0).\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Crippa A, Larsson SC, Discacciati A, Wolk A, Orsini N. Red and processed meat consumption and
#' risk of bladder cancer: a dose-response meta-analysis of epidemiological studies.
#' European journal of nutrition. 2016 Dec 22:1-3.
#'
#' @keywords data
NULL
#' Simulated data for one-stage dose-response meta-analysis
#'
#' @name sim_os
#' @description The dataset contains simulated data from 9 case-control studies.
#'
#' @docType data
#' @format A data frame with 27 observations on the following 11 variables:
#' \tabular{ll}{
#' \code{xcati} \tab category limits for the continuous exposure.\cr
#' \code{id} \tab id of the studies.\cr
#' \code{type} \tab code for study design.\cr
#' \code{dose} \tab assigned dose levels.\cr
#' \code{cases} \tab number of cases for each exposure level.\cr
#' \code{n} \tab total number of subjects for each exposure level.\cr
#' \code{rr} \tab adjusted risk estimates for each exposure level.\cr
#' \code{lrr} \tab lower bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{urr} \tab upper bound for the confidence limits of the adjusted risk estimates.\cr
#' \code{logrr} \tab natural logarithm of the adjusted risk estimates.\cr
#' \code{se} \tab standard error for the logarithm of the adjusted risk estimates.\cr
#' }
#'
#' @author Alessio Crippa, <\email{alessio.crippa@@ki.se}>
#'
#' @references
#'
#' Larsson, S. C., Orsini, N. (2011). Coffee consumption and risk of stroke: a dose-response
#' meta-analysis of prospective studies. American journal of epidemiology, 174(9), 993-1001.
#'
#' @keywords data
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.