Nothing
"drmOpt" <-
function(opfct, opdfct1, startVec, optMethod, constrained, warnVal,
upperLimits, lowerLimits, errorMessage, maxIt, relTol, opdfct2 = NULL, parmVec, traceVal, silentVal = TRUE,
matchCall)
## propagate "silentVal" from calling function?
{
## Controlling the warnings
options(warn = warnVal)
## Calculating hessian
if (is.null(opdfct2)) {hes <- TRUE} else {hes <- FALSE}
## Setting scaling parameters for optim()
psVec <- abs(startVec)
psVec[psVec < 1e-4] <- 1
## Derivatives are used
{if (!is.null(opdfct1))
{
if (constrained)
{
nlsObj <- try(optim(startVec, opfct, opdfct1, hessian = hes, method = "L-BFGS-B",
lower = lowerLimits, upper = upperLimits,
control = list(maxit = maxIt, reltol = relTol, parscale = psVec)), silent = silentVal)
} else {
nlsObj <- try(optim(startVec, opfct, opdfct1, hessian = hes, method = optMethod,
control = list(maxit = maxIt, reltol = relTol, parscale = psVec)), silent = silentVal)
}
options(warn = 0)
if (!inherits(nlsObj, "try-error"))
{
nlsFit <- nlsObj
nlsFit$convergence <- TRUE
} else {
# stop("Convergence failed")
warning("Convergence failed. The model was not fitted!", call. = FALSE)
# callDetail <- match.call()
# if (is.null(callDetail$fct)) {callDetail$fct <- substitute(l4())}
return(list(call = matchCall, parNames = parmVec, startVal = startVec, convergence = FALSE))
}
if (!hes) {nlsFit$hessian <- opdfct2(nlsFit$par)}
## Derivatives are not used
} else {
if (constrained)
{
# print(lowerLimits)
# print(upperLimits)
# print(startVec)
# print(opfct)
# print(opfct(startVec))
nlsObj <- try(optim(startVec, opfct, hessian = TRUE, method = "L-BFGS-B",
lower = lowerLimits, upper = upperLimits,
control = list(maxit = maxIt, parscale = psVec, reltol = relTol, trace = traceVal)), silent = silentVal)
# parscale is needed for the example in methionine.Rd
} else {
# psVec <- abs(startVec)
# psVec[psVec<1e-4] <- 1
nlsObj <- try(optim(startVec, opfct, hessian = TRUE, method = optMethod,
control = list(maxit = maxIt, reltol = relTol, parscale = psVec, trace = traceVal)), silent = silentVal)
# nlsObj0 <- try(optim(startVec, opfct, method=optMethod,
# control=list(maxit=maxIt, reltol=relTol, parscale=psVec)), silent=TRUE)
# nlsObj <- try(optim(nlsObj0$par, opfct, hessian=TRUE, method=optMethod,
# control=list(maxit=maxIt, reltol=relTol)), silent=TRUE)
}
options(warn = 0)
if (!inherits(nlsObj, "try-error"))
{
nlsFit <- nlsObj
nlsFit$convergence <- TRUE
} else { # to avoid an error if used in a loop
if (errorMessage)
{
stop("Convergence failed")
} else {
warning("Convergence failed. The model was not fitted!", call. = FALSE)
}
# callDetail <- match.call()
# if (is.null(callDetail$fct)) {callDetail$fct <- substitute(LL.4())}
return(list(call = matchCall, parNames = parmVec, startVal = startVec, convergence = FALSE))
}
}}
# nlsFit$ofvalue <- nlsFit$value
nlsFit$ovalue <- nlsFit$value # used in the var-cov matrix ... check
# nlsFit$value <- opfct(nlsFit$par, scaling = FALSE) # used in the residual variance ... check
nlsFit$value <- opfct(nlsFit$par)
## Returning the fit
return(nlsFit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.