Nothing
#' Prediction of Confidence Rating and Reaction Time Distribution in the drift diffusion confidence model
#'
#' \code{predictDDMConf_Conf} predicts the categorical response distribution of
#' decision and confidence ratings, \code{predictDDMConf_RT} computes the
#' RT distribution (density) in the drift diffusion confidence model
#' (Hellmann et al., 2023), given specific parameter
#' constellations. See \code{\link{dDDMConf}} for more information about the model
#' and parameters.
#'
#' @param paramDf a list or data frame with one row. Column names should match the names of
#' \link{DDMConf} model parameter names. For different stimulus quality/mean
#' drift rates, names should be `v1`, `v2`, `v3`,....
#' Different `sv` and/or `s` parameters are possible with `sv1`, `sv2`, `sv3`... (`s1`, `s2`, `s3`,...
#' respectively) with equally many steps as for drift rates. Additionally, the confidence
#' thresholds should be given by names with `thetaUpper1`, `thetaUpper2`,..., `thetaLower1`,... or,
#' for symmetric thresholds only by `theta1`, `theta2`,....
#' @param maxrt numeric. The maximum RT for the
#' integration/density computation. Default: 15 (for `predictDDMConf_Conf`
#' (integration)), 9 (for `predictDDMConf_RT`).
#' @param subdivisions \code{integer} (default: 100).
#' For \code{predictDDMConf_Conf} it is used as argument for the inner integral routine.
#' For \code{predictDDMConf_RT} it is the number of points for which the density is computed.
#' @param minrt numeric or `NULL`(default). The minimum rt for the density computation.
#' @param scaled logical. For \code{predictDDMConf_RT}. Whether the computed density
#' should be scaled to integrate to one (additional column `densscaled`). Otherwise the output
#' contains only the defective density (i.e. its integral is equal to the probability of a
#' response and not 1). If `TRUE`, the argument `DistConf` should be given, if available.
#' Default: `FALSE`.
#' @param DistConf `NULL` or `data.frame`. A `data.frame` or `matrix` with column
#' names, giving the distribution of response and rating choices for
#' different conditions and stimulus categories in the form of the output of
#' \code{predictDDMConf_Conf}. It is only necessary, if `scaled=TRUE`, because these
#' probabilities are used for scaling. If `scaled=TRUE` and `DistConf=NULL`, it will be computed
#' with the function \code{predictDDMConf_Conf}, which takes some time and the function will
#' throw a message. Default: `NULL`
#' @param stop.on.error logical. Argument directly passed on to integrate. Default is `FALSE`,
#' since the densities invoked may lead to slow convergence of the integrals (which are still
#' quite accurate) which causes R to throw an error.
#' @param .progress logical. If `TRUE` (default) a progress bar is drawn to the console.
#'
#' @return \code{predictDDMConf_Conf} returns a `data.frame`/`tibble` with columns: `condition`, `stimulus`,
#' `response`, `rating`, `correct`, `p`, `info`, `err`. `p` is the predicted probability of a response
#' and `rating`, given the stimulus category and condition. `info` and `err` refer to the
#' respective outputs of the integration routine used for the computation.
#' \code{predictDDMConf_RT} returns a `data.frame`/`tibble` with columns: `condition`, `stimulus`,
#' `response`, `rating`, `correct`, `rt` and `dens` (and `densscaled`, if `scaled=TRUE`).
#'
#'
#' @details The function \code{predictDDMConf_Conf} consists merely of an integration of
#' the response time density, \code{\link{dDDMConf}}, over the
#' response time in a reasonable interval (0 to `maxrt`). The function
#' \code{predictDDMConf_RT} wraps these density
#' functions to a parameter set input and a `data.frame` output.
#' For the argument \code{paramDf}, the output of the fitting function \code{\link{fitRTConf}}
#' with the DDMConf model may be used.
#'
#' @note Different parameters for different conditions are only allowed for drift rate
#' \code{v}, drift rate variability \code{sv}, and process variability `s`. Otherwise, `s` is
#' not required in `paramDf` but set to 1 by default. All other parameters are used for all
#' conditions.
#'
#' @references Hellmann, S., Zehetleitner, M., & Rausch, M. (2023). Simultaneous modeling of choice, confidence and response time in visual perception. \emph{Psychological Review} 2023 Mar 13. doi: 10.1037/rev0000411. Epub ahead of print. PMID: 36913292.
#'
#' @author Sebastian Hellmann.
#'
#' @name predictDDMConf
#' @importFrom stats integrate
#' @importFrom progress progress_bar
# @importFrom pracma integral
#'
#' @examples
#' # 1. Define some parameter set in a data.frame
#' paramDf <- data.frame(a=2,v1=0.5, v2=1, t0=0.1,z=0.55,
#' sz=0,sv=0.2, st0=0, theta1=0.8)
#'
#' # 2. Predict discrete Choice x Confidence distribution:
#' preds_Conf <- predictDDMConf_Conf(paramDf, maxrt = 15)
#' head(preds_Conf)
#'
#' # 3. Compute RT density
#' preds_RT <- predictDDMConf_RT(paramDf, maxrt=4, subdivisions=200) #(scaled=FALSE)
#' # same output with scaled density column:
#' preds_RT <- predictDDMConf_RT(paramDf, maxrt=4, subdivisions=200,
#' scaled=TRUE, DistConf = preds_Conf)
#' head(preds_RT)
#'
#' \donttest{
#' # Example of visualization
#' library(ggplot2)
#' preds_Conf$rating <- factor(preds_Conf$rating, labels=c("unsure", "sure"))
#' preds_RT$rating <- factor(preds_RT$rating, labels=c("unsure", "sure"))
#' ggplot(preds_Conf, aes(x=interaction(rating, response), y=p))+
#' geom_bar(stat="identity")+
#' facet_grid(cols=vars(stimulus), rows=vars(condition), labeller = "label_both")
#' ggplot(preds_RT, aes(x=rt, color=interaction(rating, response), y=dens))+
#' geom_line(stat="identity")+
#' facet_grid(cols=vars(stimulus), rows=vars(condition), labeller = "label_both")+
#' theme(legend.position = "bottom")
#' ggplot(aggregate(densscaled~rt+correct+rating+condition, preds_RT, mean),
#' aes(x=rt, color=rating, y=densscaled))+
#' geom_line(stat="identity")+
#' facet_grid(cols=vars(condition), rows=vars(correct), labeller = "label_both")+
#' theme(legend.position = "bottom")
#' }
#' # Use PDFtoQuantiles to get predicted RT quantiles
#' head(PDFtoQuantiles(preds_RT, scaled = FALSE))
#'
#' @rdname predictDDMConf
#' @export
predictDDMConf_Conf <- function(paramDf,
maxrt=15, subdivisions = 100L, stop.on.error=FALSE,
.progress=TRUE){
nConds <- length(grep(pattern = "^v[0-9]", names(paramDf), value = T))
symmetric_confidence_thresholds <- length(grep(pattern = "thetaUpper", names(paramDf), value = T))<1
if (symmetric_confidence_thresholds) {
nRatings <- length(grep(pattern = "^theta[0-9]", names(paramDf)))+1
} else {
nRatings <- length(grep(pattern = "^thetaUpper[0-9]", names(paramDf)))+1
}
if (nConds > 0 ) {
V <- c(t(paramDf[,paste("v",1:(nConds), sep = "")]))
} else {
V <- paramDf$v
nConds <- 1
}
vary_s <- length(grep(pattern = "^s[0-9]", names(paramDf), value = T))>1
if (vary_s){
S <- c(t((paramDf[,paste("s",1:(nConds), sep = "")])))
} else {
if ("s" %in% names(paramDf)) {
S <- rep(paramDf$s, nConds)
} else {
S <- rep(1, nConds)
}
}
vary_sv <- length(grep(pattern = "^sv[0-9]", names(paramDf), value = T))>1
if (vary_sv){ ## ToDo: vary< sv across conditions
SV <- c(t((paramDf[,paste("sv",1:(nConds), sep = "")])))
} else {
SV <- rep(paramDf$sv, nConds)
}
## Recover confidence thresholds
if (symmetric_confidence_thresholds) {
thetas_upper <- c(0, t(paramDf[,paste("theta",(nRatings-1):1, sep = "")]), 1e+64)
thetas_lower <- c(0, t(paramDf[,paste("theta",(nRatings-1):1, sep = "")]), 1e+64)
} else {
thetas_upper <- c(0, t(paramDf[,paste("thetaUpper",(nRatings-1):1, sep = "")]), 1e+64)
thetas_lower <- c(0, t(paramDf[,paste("thetaLower",(nRatings-1):1, sep="")]), 1e+64)
}
# Because we integrate over the response time, st0 does not matter
# So, to speed up computations for high values of st0, we set it to 0
# but add the constant to maxrt
maxrt <- maxrt + paramDf$st0
a = paramDf$a
z = paramDf$z
sz = paramDf$sz
res <- expand.grid(condition = 1:nConds, stimulus=c(-1,1),
response=c(-1,1), rating = 1:nRatings,
p=NA, info=NA, err=NA)
if (.progress) {
pb <- progress_bar$new(total = nConds*nRatings*4)
}
for (i in 1:nrow(res)) {
row <- res[i,]
s = S[row$condition]
th1 = ifelse(row$response == 1, thetas_upper[(nRatings+1-row$rating)], thetas_lower[(nRatings+1-row$rating)])
th2 = ifelse(row$response == 1, thetas_upper[(nRatings+2-row$rating)], thetas_lower[(nRatings+2-row$rating)])
v = V[row$condition]*(row$stimulus)
sv = SV[row$condition]
p <- integrate(function(rt) return(dDDMConf(rt, response=row$response,
th1 = 0, th2=1e+64,
v=v, s=s,
sv = sv, z=z, sz=sz,
a = a,
st0 = 0, t0 =0,
z_absolute = FALSE)),
lower=th1, upper=min(th2, maxrt), subdivisions = subdivisions,
stop.on.error = stop.on.error)
if (.progress) pb$tick()
res[i, 5:7] <- list(p = p$value, info = p$message, err = p$abs.error)
}
res$correct <- as.numeric(res$stimulus==(2*as.numeric(res$response=="upper")-1 ))
res <- res[c("condition", "stimulus", "response", "correct", "rating", "p", "info", "err")]
# the last line is to sort the output columns
# (to combine outputs from predictWEV_Conf and predictDDMConf_Conf)
res
}
### Predict RT-distribution
#' @rdname predictDDMConf
#' @export
predictDDMConf_RT <- function(paramDf,
maxrt=9, subdivisions = 100L, minrt=NULL,
scaled = FALSE, DistConf=NULL,
.progress = TRUE) {
if (scaled && is.null(DistConf)) {
message(paste("scaled is TRUE and DistConf is NULL. The rating distribution will",
" be computed, which will take additional time.", sep=""))
}
nConds <- length(grep(pattern = "^v[0-9]", names(paramDf), value = T))
symmetric_confidence_thresholds <- length(grep(pattern = "thetaUpper", names(paramDf), value = T))<1
if (symmetric_confidence_thresholds) {
nRatings <- length(grep(pattern = "^theta[0-9]", names(paramDf)))+1
} else {
nRatings <- length(grep(pattern = "^thetaUpper[0-9]", names(paramDf)))+1
}
if (nConds > 0 ) {
V <- c(t(paramDf[,paste("v",1:(nConds), sep = "")]))
} else {
V <- paramDf$v
nConds <- 1
}
vary_s <- length(grep(pattern = "^s[0-9]", names(paramDf), value = T))>1
if (vary_s){
S <- c(t((paramDf[,paste("s",1:(nConds), sep = "")])))
} else {
if ("s" %in% names(paramDf)) {
S <- rep(paramDf$s, nConds)
} else {
S <- rep(1, nConds)
}
}
vary_sv <- length(grep(pattern = "^sv[0-9]", names(paramDf), value = T))>1
if (vary_sv){ ## ToDo: vary< sv across conditions
SV <- c(t((paramDf[,paste("sv",1:(nConds), sep = "")])))
} else {
SV <- rep(paramDf$sv, nConds)
}
## Recover confidence thresholds
if (symmetric_confidence_thresholds) {
thetas_upper <- c(0, t(paramDf[,paste("theta",(nRatings-1):1, sep = "")]), 1e+64)
thetas_lower <- c(0, t(paramDf[,paste("theta",(nRatings-1):1, sep = "")]), 1e+64)
} else {
thetas_upper <- c(0, t(paramDf[,paste("thetaUpper",(nRatings-1):1, sep = "")]), 1e+64)
thetas_lower <- c(0, t(paramDf[,paste("thetaLower",(nRatings-1):1, sep="")]), 1e+64)
}
if (is.null(minrt)) minrt <- paramDf$t0
rt = seq(minrt, maxrt, length.out = subdivisions)
df <- expand.grid(rt = rt,
rating = 1:nRatings,
response=c(-1,1),
stimulus=c(-1,1),
condition = 1:nConds, dens=NA)
if (scaled) {
## Scale RT-density to integrate to 1 (for plotting together with simulations)
# Therefore, divide the density by the probability of a
# decision-rating-response (as in data.frame DistConf)
if (is.null(DistConf)) {
DistConf <- predictDDMConf_Conf(paramDf,
maxrt = maxrt, subdivisions=subdivisions,
.progress = FALSE)
}
DistConf <- DistConf[,c("rating", "response", "stimulus", "condition", "p")]
df$densscaled <- NA
}
if (.progress) {
pb <- progress_bar$new(total = nConds*nRatings*4)
}
for ( i in 1:(nRatings*2*2*nConds)) {
cur_row <- df[1+((i-1)*subdivisions),]
s <- S[cur_row$condition]
th1 <- ifelse(cur_row$response == 1, thetas_upper[(nRatings+1-cur_row$rating)], thetas_lower[(nRatings+1-cur_row$rating)])
th2 <-ifelse(cur_row$response == 1, thetas_upper[(nRatings+2-cur_row$rating)], thetas_lower[(nRatings+2-cur_row$rating)])
v <- V[cur_row$condition]*(cur_row$stimulus)
sv <- SV[cur_row$condition]
df[(1:subdivisions) + subdivisions*(i-1), "dens"] <-
dDDMConf(rt, as.character(cur_row$response),
th1 = th1, th2=th2,
v = v, s=s, sv=sv,
a = paramDf$a,
z = paramDf$z, sz = paramDf$sz,
t0 = paramDf$t0, st0 = paramDf$st0)
if (scaled) {
P <- DistConf[DistConf$condition==cur_row$condition &
DistConf$response==cur_row$response &
DistConf$rating == cur_row$rating &
DistConf$stimulus==cur_row$stimulus,]$p
if (P != 0) {
df[(1:subdivisions) + subdivisions*(i-1), "densscaled"] <-
df[(1:subdivisions) + subdivisions*(i - 1), "dens"]/P
} else {
df[(1:subdivisions) + subdivisions*(i-1), "densscaled"] <- 0
}
}
if (.progress) pb$tick()
}
df$correct <- as.numeric(df$stimulus==df$response)
df <- df[,c("condition", "stimulus", "response", "correct", "rating",
"rt", "dens", rep("densscaled", as.numeric(scaled)))]
# the last line is to sort the output columns
# (to combine outputs from predictWEV_RT and predictDDMConf_RT)
return(df)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.