Nothing
`datprep_LPCM` <-
function(X,W,mpoints,Groups,sum0)
{
#TFrow <- (rowSums(X)==0) #el. persons with 0 rawscore
#X <- X[!TFrow,]
ngroups <- max(Groups)
N <- dim(X)[1] #number of persons
K <- dim(X)[2]/mpoints #number of items
mt_vek <- apply(X,2,max,na.rm=TRUE)[1:K] #number of categories - 1 for each item
mt_vek_0 <- mt_vek+1 #number of categories for each item
X01_0 <- matrix(rep(0,(N*sum(mt_vek_0)*mpoints)),nrow=N) #empty 0/1 matrix
K1 <- dim(X)[2]
cummt0 <- c(0,cumsum(rep(mt_vek_0,mpoints))[1:(K1-1)])+1 #index vector for 0th category
indmatp <- apply(X,1,function(xi) {xi+cummt0}) #preparing index matrix for 1 responses
imp1 <- as.vector(indmatp)
imp2 <- rep(1:N,rep(K1,N))
indmat <- cbind(imp2,imp1) #final index matrix for 1 responses
X01_0[indmat] <- 1 #0/1 matrix with 0th category
d1 <- 1:N
d2 <- 1:K1
coor <- expand.grid(d2,d1)[,c(2:1)] #X coordinates
resvec <- as.vector(t(X)) #X as vector (rowwise)
NAind <- as.matrix(coor[is.na(resvec),]) #index matrix for NA's in X
mt_vek.t <- rep(mt_vek,mpoints)
if (length(NAind) > 0) {
NAindlist <- apply(NAind,1,function(x){
#x <- unlist(x)
co <- seq(cummt0[x[2]],cummt0[x[2]]+mt_vek.t[x[2]])
NAind01 <- cbind(rep(x[1],length(co)),co)
rownames(NAind01) <- NULL
data.frame(NAind01,row.names=NULL) #list with NA indices
})
indmatNA <- matrix(unlist(lapply(NAindlist, function(x) {t(as.matrix(x))})),ncol=2,byrow=TRUE) #matrix with NA indices
X01_0[indmatNA] <- NA
}
X01 <- X01_0[,-cummt0]
#automatized generation of the design matrix W
if (length(W)==1) {
W11diag <- diag(1,(sum(mt_vek)-1)) #build up design matrix
if (sum0) {
w110 <- rep(-1,(sum(mt_vek)-1)) #sum0 restriction
} else {
w110 <- rep(0,(sum(mt_vek)-1)) #first item category parameter set to 0
}
W11 <- rbind(w110,W11diag) #PCM design matrix
ZW <- dim(W11)[1]
W1 <- NULL
for (i in 1:(mpoints*ngroups)) W1 <- rbind(W1,W11) #first part with virtual items
if (mpoints > 1) { #more than 1 measurement points
if (ngroups > 1) { #more than 1 group/more mpoints
t_mp1 <- rep(1:mpoints,rep(ZW*ngroups,mpoints))
t_mp <- factor(t_mp1)
g_ng1 <- rep(rep(1:ngroups,rep(ZW,ngroups)),mpoints)
g_ng <- factor(g_ng1)
W2 <- model.matrix(~t_mp+g_ng)[,-1] #main effects g and mp
W2[1:(ZW*ngroups),] <- 0 #remove main effects for the first test occasion
} else { #1 group/more mpoints
t_mp <- gl(mpoints,ZW) #factor for measurement points
W2 <- model.matrix(~t_mp)[,-1] }
} else if (ngroups > 1) { #1 mpoint/more groups
g_ng <- gl(ngroups,ZW)
W2 <- model.matrix(~g_ng)[,-1]
warning("Group contrasts without repeated measures can not be estimated!")
} else if (ngroups == 1) W2 <- NULL #1 mpoint/1 group
catvek <- sequence(mt_vek)
W2_cat <- W2*catvek #imposing item categories
W <- cbind(W1,W2_cat) #design matrix completed
colnames(W) <- NULL
rownames(W) <- NULL
}
list(X=X,X01=X01,mt_vek=mt_vek,W=W)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.