R/datprep_RSM.R

Defines functions `datprep_RSM`

`datprep_RSM` <-
function(X,W,sum0)
{
#... X: data matrix with response categories to be converted into 0/1 matrix  
  
  max.it <- apply(X,2,max,na.rm=TRUE)             #RSM check for equal number of categories
  if (length(table(max.it)) > 1) stop("RSM can not be computed since number of categories are not the same for each item!\n")
  
  N <- dim(X)[1]                                  #number of persons
  K <- dim(X)[2]                                  #number of items
  hmax <- max(X,na.rm=TRUE)                       #highest category
  mt_vek <- rep(hmax,K)                           #vector with number of categories - 1 for each item

  mt_vek_0 <- mt_vek+1                            #number of categories for each item
  X01_0 <- matrix(rep(0,(N*sum(mt_vek_0))),nrow=N) #empty 0/1 matrix
  K <- length(mt_vek)     
  cummt0 <- c(0,cumsum(mt_vek_0)[1:(K-1)])+1      #index vector for 0th category
  indmatp <- apply(X,1,function(xi) {xi+cummt0})  #preparing index matrix for 1 responses
  imp1 <- as.vector(indmatp)
  imp2 <- rep(1:N,rep(K,N))
  indmat <- cbind(imp2,imp1)                      #final index matrix for 1 responses
  X01_0[indmat] <- 1                              #0/1 matrix with 0th category
  
  NAindmat <- rbind(imp2,rep(1:K,N),c(t(X)))         #impose NA structure
  rownames(NAindmat) <- NULL
  NAind <- t(NAindmat[1:2,is.na(NAindmat[3,])])      #index matrix for NA's in X
   
  if (length(NAind) > 0) {
    NAindlist <- apply(NAind,1,function(x){
                    co <- seq(cummt0[x[2]],cummt0[x[2]]+mt_vek[x[2]])
                    NAind01 <- cbind(rep(x[1],length(co)),co)
                    data.frame(NAind01,row.names=NULL)                                               #list with NA indices
                    })
    indmatNA <- matrix(unlist(lapply(NAindlist, function(x) {t(as.matrix(x))})),ncol=2,byrow=TRUE)   #matrix with NA indices 
    X01_0[indmatNA] <- NA
  }
  
  X01 <- X01_0[,-cummt0]                          #delete 0-category answers --> final 0/1 pattern matrix (dim N*sum(mt_vek))
  
  #automatized generation of the design matrix W
  if (length(W)==1) {
    e_it <- gl(K,hmax)                              #factor for item parameters
    e_cat <- gl(hmax,1,K*hmax)                      #factor for category par
    
    if (sum0) {
      Xm <- model.matrix(~e_it+e_cat)[,-1]          #dummy coding
      Xm[1:hmax,1:(K-1)] <- -1                      #first item to be sum0 normalized
    } else {
      Xm <- model.matrix(~e_it+e_cat)[,-1]          #design matrix with 0/1 contrasts (without intercept)
    }
  
    catvek <- 1:hmax                                #preparing the item design vectors
    e_itnew <- catvek*Xm[,1:(K-1)]                  
    Xm[,1:(K-1)] <- e_itnew
    W <- Xm                                         #final design matrix    
    colnames(W) <- NULL
    rownames(W) <- NULL 
  }
                                                                    
  list(X=X,X01=X01,mt_vek=mt_vek,W=W)
#Output: X01      ... 0/1 response matrix of dimension N*rtot
#        mt_vek   ... vector of length K with number of categories - 1 (for each item)
#        W        ... design matrix of dimension sum(mt_vek)*((K-1)+(hmax-1))
}

Try the eRm package in your browser

Any scripts or data that you put into this service are public.

eRm documentation built on May 29, 2024, 2:12 a.m.