R/report.r

Defines functions reshapeReport compare_point_estimates seCorrect.rep_se_correction recursive_filter separate_jk2 seCorrect.wec_se_correction seCorrect.old seCorrect

report <- function ( repFunOut, trendDiffs = FALSE, add=list(), exclude = c("Ncases", "NcasesValid", "var", "sampleSize"), printGlm = FALSE,
                     round = TRUE, digits = 3, printDeviance = FALSE, target = c("default", "BT2021", "BT2021.table"), wholeGroupName = "Deutschland" ) {
          if(is.null(repFunOut)) {return(NULL)}
          target   <- match.arg(target, choices = c("default", "BT2021", "BT2021.table"))
    ### vorab: alte 'dG'-Funktion zum Anzeigen der Regressionsergebnisse implementieren
          if ( length(grep("glm", as.character(repFunOut[["resT"]][[1]][1,"modus"]))) ==1 ) {
               if ( printGlm == TRUE ) { dG(repFunOut, digits = digits, printDeviance = printDeviance, add = add ) }
          }
    ### 1. Input extrahieren: diese Variablen dann spaeter an Einzelfunktionen weitergeben!
          jk2      <- repFunOut[["resT"]]
          tv       <- repFunOut[["allNam"]][["trend"]]
          cols     <- c("group", "depVar", "modus", "parameter")
          grpv     <- setdiff(setdiff(colnames(jk2[[1]]), cols), c("comparison", "coefficient", "value", tv))
          grp_by   <- repFunOut[["allNam"]][["group.differences.by"]]
          cl_diffs <- repFunOut[["allNam"]][["cross.differences"]]
          funs     <- c("mean", "table", "quantile", "glm")
          fun      <- funs [ which( unlist(lapply(funs, FUN = function ( f ) { length(grep(f, jk2[[1]][1,"modus"]))})) > 0) ]
    ### 2. cross-level diffs bestimmen: ueberschreibt bzw. erweitert das Objekt 'jk2' ... Achtung: sind nur fuer "mean" oder "table" erlaubt
          if ( is.list(cl_diffs) ) {
               jk2 <- lapply(jk2, FUN = function (df) {computeCrossLevel (df, cols=cols, grpv = grpv, fun = fun, cl_diffs = cl_diffs, comp_type = "crossDiff")})
               jk2 <- lapply(jk2, FUN = function (df) {                         ### in spalte "comparison" 'crossDiff_of_groupDiff' eintragen, falls in Spalte "group" 3x ".vs." steht
                      spl <- strsplit(df[,"group"], ".vs.")
                      ind <- which(sapply(spl, length)==4)
                      if ( length(ind)>0) {
                           df[ind,"comparison"] <- "crossDiff_of_groupDiff"     ### das mittlere ".vs." gross schreiben
                           df[ind,"group"]      <- unlist(lapply(spl[ind], FUN = function ( z ) {paste(z[1], ".vs.", z[2], ".VS.", z[3], ".vs.", z[4], sep="")}))
                      }
                      return(df)})
          }
    ### 2.b) SE correction durchfuehren (siehe Paper Weirich & Hecht)
          if(!is.null(repFunOut[["SE_correction"]]) && !is.null(repFunOut[["SE_correction"]][[1]])) {
    ### checks, ob Vergleiche dabei, fuer die keine Korrektur verfuehgbar ist
            if(length(which(jk2[[1]][["comparison"]] == "crossDiff_of_groupDiff")) > 0 ) {
                warning("Standard error correction for 'crossDiff_of_groupDiff' is currently not supported.")
            }
            mult_hierarchy <- any(unlist(lapply(repFunOut$allNam$cross.differences, function(x) x[2] - x[1] != 1)))
            if(mult_hierarchy) warning("Standard error correction for crossDifferences across multiple hierarchy levels is currently not supported.")
    ### correction durchfuehren
            jk2 <- lapply(jk2, function(jk2_single) { seCorrect(SE_correction = repFunOut[["SE_correction"]], jk2 = jk2_single, grpv = grpv)   })
          }
    ### 3. Trend bestimmen
          if ( !is.null(tv) ) {
               jk2 <- computeTrend(jk2 = jk2, repFunOut = repFunOut, tv = tv, fun = fun)
          } else {
               jk2 <- jk2[[1]]
          }
    ### 4. Trend-Differences bestimmen ... Achtung: sind nur fuer "mean" oder "table" erlaubt
          if ( !is.null(tv) && trendDiffs ) {
               jk2 <- computeTrendDiffs(jk2 = jk2, grpv = grpv, tv = tv, grp_by = grp_by, fun = fun, cl_diffs = cl_diffs)
          }
    ### 5. 'add' ergaenzen, falls gewuenscht
          if ( length(add)>0) {
               if(!all(nchar(names(add))>0)) { stop("'add' must be named.")}    ### necessary checks
               if(length(names(add)) != length(unique(names(add)))) { stop("Duplicated names of 'add' are not allowed.")}
               if(!all(sapply(add, length) == 1)) {stop("All elements of 'add' must be of length 1.")}
               if(!all(sapply(add, class) == "character")) {stop("All elements of 'add' must be of class 'character'.")}
               dopp<- names(add) %in% colnames(jk2)
               ind <- which(dopp==TRUE)
               if ( length( ind ) > 0 ) {stop(paste0("Following names of 'add' are not allowed: '",paste(names(add)[ind], collapse = "', '"), "'."))}
               for ( u in names(add)) {jk2[,u] <- add[[u]]}
          }
    ### 6. reshapen
          spltVar  <- c("coefficient", tv)                                      ### split-Variable
          if ( length(exclude)>0) {
               weg <- which(jk2[,"parameter"] %in% exclude)
               if ( length(weg)>0) {
                    jk2 <- jk2[-weg,]
               }
          }                                                                     ### was muss in die Spalten? das haengt davon ab, ob es einen Trend gibt
          frml     <- as.formula(paste0("... ~ ", paste(spltVar,collapse=" + ") ) )
    ### Hotfix: damit fuer glm im Output die Koeffizienten immer zuerst und R2, R2nagel, Nvalid imer dahinter stehen, werden die jetzt voruebergehen umbenannt (hinterher wieder zurueck benannt)
          if ( fun == "glm") {jk2[,"parameter"] <- car::recode(jk2[,"parameter"], "'Nvalid'='zzzzNvalid'; 'R2'='zzzzR2'; 'R2nagel'='zzzzR2nagel'") }
          jk2wide  <- reshape2::dcast(data = jk2, formula = frml, value.var = "value")
          if ( fun == "glm") {jk2wide[,"parameter"] <- car::recode(jk2wide[,"parameter"], "'zzzzNvalid'='Nvalid'; 'zzzzR2'='R2'; 'zzzzR2nagel'='R2nagel'") }
    ### runden, falls gewuenscht
          if ( isTRUE(round)) {
               jk2wide <- eatTools::roundDF(jk2wide, digits = digits)
          }
    ### output fuer BT2021 reshapen, falls gewuenscht
          if ( target %in% c("BT2021", "BT2021.table")) {
               jk2wide <- reshapeReport(jk2wide, tv=tv, fun=fun, repFunOut = repFunOut, target=target, wholeGroupName=wholeGroupName)
          }
          return(jk2wide)}

addSig <- function ( dat , groupCols = NULL , allNam = NULL ) {
          if(is.null(groupCols)) {groupCols <- c("group", "parameter")}
          dat <- do.call("rbind", by ( data = dat, INDICES = dat[,groupCols], FUN = function ( x ) {
                 z  <- x[which(x[,"coefficient"] %in% c("est", "se")),]
                 if ( nrow(z) > 2) {cat("Fehler. x muss maximal 2 zeilen haben.\n")}
                 if ( nrow(z) == 2 ) {
                      y  <- z[1,]                                               ### dazu relevante spalten identifizieren, nach denen gesplittet werden muss
                      y[["coefficient"]] <- "p"                                 ### erste Zeile von x duplizieren und relevante Werte ersetzen
                      y[["value"]]       <- 2*pnorm(abs(z[which(z[,"coefficient"] == "est"),"value"] / z[which(z[,"coefficient"] == "se"),"value"]), lower.tail=FALSE)
                      x  <- rbind ( x, y)                                       ### Achtung: Signifikanzwert wird hier noch nach numerisch transformiert, muss zurueckgewandelt werden
                 }
                 return(x)}))                                                   ### untere Zeile: wenn 'table' ueber 'jk2.mean' gewrappt wurde, muessen hier die parameterbezeichnungen geaendert werden
          return(dat)}


seCorrect <- function( SE_correction, jk2, grpv ) {
  # stop("SE correction has not been implemented yet. Use crossDiffSE = 'old'.")
  UseMethod("seCorrect")
}

seCorrect.old <- function( SE_correction, jk2, grpv ) {
  jk2
}

## an der falschen Stelle! muss vor Trends passieren!
seCorrect.wec_se_correction <- function( SE_correction, jk2, grpv ) {
  sep_jk2 <- separate_jk2(jk2 = jk2)
  cross_diff <- sep_jk2[["cross_diff"]]

  for(i in seq_along(SE_correction)) {
    # debug 3 grp-vars: i <- 4
    output <- SE_correction[[i]][["resT"]][[sep_jk2[["year"]]]]

    rows <- length(SE_correction[[i]][["vgl"]][["groups.divided.by"]])
    single_grpv <- SE_correction[[i]][["focGrp"]]

    # Nicht output reporten, da spalten sonst je nach Trend unterschiedlich heissen
    SEs <- output[!output$parameter %in% c("(Intercept)", "Nvalid", "R2"), c("parameter", "value", "coefficient")]
    SEs[, "parameter"] <- gsub(paste0("^", single_grpv), "", SEs[, "parameter"])
    SEs <- as.data.frame(tidyr::pivot_wider(SEs, names_from = "coefficient", values_from = "value"))

    #if(is.data.frame(SE_correction[[i]]$refGrp) && identical(SE_correction[[i]]$refGrp$groupValue, "LandA")) browser()
    for(param in SEs[["parameter"]]) {
      esc_param <- Hmisc::escapeRegex(param)
      if(identical(SE_correction[[i]]$refGrp, "all")) { ## if reference level is the whole group
        grp_regexp <- paste0("^", esc_param, "\\.vs")
        compare_point_estimates(old_est = cross_diff[cross_diff$parameter == "mean" & grepl(grp_regexp, cross_diff$group) & cross_diff$coefficient == "est", "value"],
                                new_est = SEs[SEs[, "parameter"] == param, "est"],
                                param = param)
        # funktioniert nur, da keine correction ueber mehrere Hierarchieebenen hinweg funktioniert!
        cross_diff[cross_diff$parameter == "mean" & grepl(grp_regexp, cross_diff$group) & cross_diff$coefficient == "se",
                   "value"] <- SEs[SEs[, "parameter"] == param, "se"]
        cross_diff[cross_diff$parameter == "mean" & grepl(grp_regexp, cross_diff$group) & cross_diff$coefficient == "p",
                   "value"] <- SEs[SEs[, "parameter"] == param, "p"]
      } else { ### if reference level is a subgroup

        # create variable to select right rows in jk2 output
        #param_finder <- cross_diff$group
        #param_finder <- sapply(strsplit(param_finder, ".vs."), function(x) x[1])

        ## complicated to find param match, because the factor string of another level can contain the string of the current level!
        param_selector <- paste0("^", esc_param, "\\.|", "^", esc_param, "_|", "_", esc_param, "\\.|", "_", esc_param, "_")
        col_names <- SE_correction[[i]]$refGrp[, "groupName"]
        col_levels <- SE_correction[[i]]$refGrp[, "groupValue"]
        #if(identical(col_levels, c("female", "TRUE"))) browser()
        # filter relevant rows for flexibel number of filter variables
        filt_var <- recursive_filter(df = cross_diff, vars = col_names, var_levels = col_levels)
        compare_point_estimates(old_est = cross_diff[which(filt_var & grepl(param_selector, cross_diff$group) & cross_diff$coefficient == "est"), "value"],
                                new_est = SEs[SEs[, "parameter"] == param, "est"],
                                param = param)
        cross_diff[which(filt_var & grepl(param_selector, cross_diff$group) & cross_diff$coefficient == "se"),
                   "value"] <- SEs[SEs[, "parameter"] == param, "se"]
        cross_diff[which(filt_var & grepl(param_selector, cross_diff$group) & cross_diff$coefficient == "p"),
                   "value"] <- SEs[SEs[, "parameter"] == param, "p"]
      }
    }
  }
  # change modus in reporting output for WEC
  cross_diff$modus <- unique(SE_correction[[1]][[1]][[1]]$modus)
  
  ## mehr Fragen
  # _ in Faktorlevels erlaubt?
  # next: trend, groupdiffs checken, ob hier SEs korrekt beruecksichtigt werden
  # was passiert eig. wenn faktorlevel verschiedener Variablen gleich heissen?
  rbind(sep_jk2[["no_cross_diff"]], cross_diff)
}

## Prepare jk2 object for se_correction
separate_jk2 <- function(jk2) {
  ## Trend or no trend
  year <- as.character(unique(jk2[["year"]]))
  if(length(year) == 0) year <- 1
  ## dissect results so far
  no_cross_diff <- jk2[is.na(jk2$comparison) | jk2$comparison != "crossDiff" | jk2$parameter != "mean", ]
  cross_diff <- jk2[which(jk2$comparison == "crossDiff" & jk2$parameter == "mean"), ]
  stopifnot(identical(nrow(no_cross_diff) + nrow(cross_diff), nrow(jk2)))
  stopifnot(nrow(cross_diff) > 0)
  list(cross_diff = cross_diff, no_cross_diff = no_cross_diff, year = year)
}

recursive_filter <- function(df, vars, var_levels) {
  stopifnot(length(vars) == length(var_levels))
  filt_var <- rep(TRUE, nrow(df))
  for(i in seq_along(vars)) {
    filt_var <- filt_var & df[[vars[i]]] == var_levels[[i]]
  }
  # output: vector with T/F
  filt_var
}

seCorrect.rep_se_correction <- function( SE_correction, jk2, grpv ) {
  sep_jk2 <- separate_jk2(jk2 = jk2)
  cross_diff <- sep_jk2[["cross_diff"]]
  no_cross_diff <- sep_jk2[["no_cross_diff"]]
  for(i in seq_along(SE_correction)) {
    output <- SE_correction[[i]][["resT"]][[sep_jk2[["year"]]]]
    rows <- length(SE_correction[[i]][["vgl"]][["groups.divided.by"]])
    single_grpv <- SE_correction[[i]][["focGrp"]]
    for(param in output[["group"]]) {
      compare_point_estimates(old_est = cross_diff[cross_diff$group == param & cross_diff$coefficient == "est", "value"],
                              new_est = output[output$group == param & output$coefficient == "est", "value"],
                              param = param)
      cross_diff[cross_diff$group == param & cross_diff$coefficient == "se", "value"] <- output[output$group == param & output$coefficient == "se", "value"]
      cross_diff[cross_diff$group == param & cross_diff$coefficient == "p", "value"]  <- output[output$group == param & output$coefficient == "p", "value"]
    }
  }
  rbind(no_cross_diff, cross_diff)
}

compare_point_estimates <- function(old_est, new_est, param) {
  if(abs(abs(old_est) - abs(new_est)) >= 1e-10) {
    #browser()
    warning("Difference in point estimate of cross level difference for comparison ", param, ": ", round(abs(old_est) - abs(new_est), digits = 3))
  }
  return()
}

reshapeReport <- function(inp, tv, fun, repFunOut, target, wholeGroupName) {
    ### testweise initialisieren
          inpR <- inp                                                           ### untere zeile: levels der Trendvariablen
          lev  <- paste(as.character(unique(do.call("rbind", repFunOut[["resT"]])[,repFunOut[["allNam"]][["trend"]]])), collapse="|")
    ### reshapen nur machen, wenn Parameterspalte mehr als einen Eintrag hat ... das ist bspw. nicht der Fall, wenn man repTable() mit dichotomer AV (Regelstandard erreicht) macht
          if (length(unique(inp[,"parameter"])) > 1) {
    ### fuer trend
              if (!is.null(tv) ) {
    ### fuer mittelwerte mit trend
                   if (fun == "mean") {
                        inpR <- data.frame(tidyr::pivot_wider(inp, names_from = "parameter", values_from = grep(lev, colnames(inp), value=TRUE)), stringsAsFactors=FALSE)
                   }
    ### fuer haeufigkeitsverteilungen mit trend
                   if (fun == "table") {
                        inpR <- data.frame(tidyr::pivot_wider(inp, names_from = "parameter", values_from = grep(lev, colnames(inp), value=TRUE)), stringsAsFactors=FALSE)
                   }
              }  else  {
    ### fuer mittelwerte ohne trend
                   if (fun == "mean") {
                        inpR <- data.frame(tidyr::pivot_wider(inp, names_from = "parameter", values_from = intersect(c("es", "est", "p", "se"), colnames(inp))), stringsAsFactors=FALSE)
                   }
    ### fuer haeufigkeitsverteilungen ohne trend
                   if (fun == "table") {
                        inpR <- data.frame(tidyr::pivot_wider(inp, names_from = "parameter", values_from = intersect(c("est", "p", "se"), colnames(inp))), stringsAsFactors=FALSE)
                   }
              }
          }
    ### fuer allen Output: spalten, die nur NA haben, loeschen
          inpR <- inpR[, colSums(is.na(inpR)) != nrow(inpR)]
    ### crossDiff-Benennung anpassen (Mail Juan Jose, 27.04.2022, 9.37 Uhr). Das passiert auch dann, wenn nicht gereshapet wird
          if ("comparison" %in% colnames(inpR)) {
               if( any(c("crossDiff", "trendDiff_cross") %in% inpR[,"comparison"])) {
                  rows <- intersect(intersect(grep("wholeGroup$", inpR[,"group"]), setdiff(1:nrow(inpR), grep("_",inpR[,"group"]))), which(inpR[,"comparison"] %in% c("crossDiff", "trendDiff_cross")))
                  if (length(rows)>0) {
                       inpR[rows,"group"] <- eatTools::removePattern(inpR[rows,"group"], "\\.vs\\.wholeGroup$")
                  }
               }
          }
    ### Alternativ: Mail Kristoph, 12.05.2022, 18.40 Uhr (geht wahrscheinlich nur fuer eine Gruppierungsvariable)
          if (fun == "table" && length(unique(inpR[,"group"])) < nrow(inpR) && target == "BT2021.table" && length(repFunOut[["allNam"]][["group"]])>0 ) {
              prz <- grep("^est|^se", colnames(inpR), value=TRUE)
              if(length(prz)<1) {warning("Cannot found colums with percentage values. Skip value transformation.")}  else {
                  for ( i in prz) { inpR[,i] <- 100*inpR[,i]}
              }
    ### Spalten identifizieren, die fuers reshapen entfernt werden muessen, und zwar sowohl fuer mit als auch fuer ohne trend
              weg  <- grep(repFunOut[["allNam"]][["group"]], colnames(inpR))
              stopifnot(length(weg)>0)
    ### erstmal ohne Trend
              if (is.null(tv) ) {
                  inpR <- data.frame(tidyr::pivot_wider(inpR[,-weg], names_from = "comparison", values_from = intersect(c("es", "est", "p", "se"), colnames(inpR))), stringsAsFactors=FALSE)
              }  else  {                                                        ### mit Trend
                  inpR <- data.frame(tidyr::pivot_wider(inpR[,-weg], names_from = "comparison", values_from = grep(lev, colnames(inp), value=TRUE)), stringsAsFactors=FALSE)
              }
              inpR[,"group"] <- car::recode(inpR[,"group"], paste0("'wholeGroup'='",wholeGroupName,"'"))
              colnames(inpR) <- eatTools::removePattern(colnames(inpR), pattern = "_NA$")
          }
          inpR <- inpR[, colSums(is.na(inpR)) != nrow(inpR)]                    ### nochmal spalten loeschen mit nur NA
          return(inpR)}

Try the eatRep package in your browser

Any scripts or data that you put into this service are public.

eatRep documentation built on June 29, 2022, 5:06 p.m.