R/summary-print-methods.R

Defines functions summary.efflatent print.efflatent summary.effpoly print.effpoly summary.efflist print.efflist print.eff print.summary.eff summary.eff

Documented in print.eff print.efflatent print.efflist print.effpoly print.summary.eff summary.eff summary.efflatent summary.efflist summary.effpoly

# plot, summary, and print methods for effects package
# John Fox and Jangman Hong
#  last modified 2012-11-30 by J. Fox
#  29 June 2011 added grid, rotx and roty arguments to the two plot methods
#   by S. Weisberg
#  21 Dec 2012 modest modification of empty cells with crossed factors
#  2013-01-17: Added factor.ci.style arg to plot.eff() and plot.effpoly(). J. Fox
#  2013-01-18: Added CI bars to multiline plots with factor.ci.style="bars"
#  2013-01-19: Renamed 'factor.ci.style' to 'ci.style'.  Added a 'none' option
#   extended to variate terms if multiline=TRUE, ci.style="bars"
#  2013-01-30: scale arrow "heads" for error bars relative to cex
#  2013-05-31: fixed symbol colors in legends in plot.eff(). J. Fox
#  2013-08-14: fixed bug in restoring warn option. J. Fox
#  2013-08-27: fixed symbols argument for multiline plot in plot.eff(), reported by Ulrike Gromping. J. Fox
#  2013-08-31: fixed handling of ticks.x argument. John
#  2013-09-25: moved plot.eff methods to plot.methods.R for easier work. Michael
#  2013-10-17: added use.splines argument to plot.effpoly.  Sandy


summary.eff <- function(object, type=c("response", "link"), ...){
  result <- list()
  result$header <- paste("\n", gsub(":", "*", object$term), 'effect\n')
  result$offset <- object$offset
  type <- match.arg(type)
  if (type == "response") {
    object$fit <- object$transformation$inverse(object$fit)
    if (!is.null(object$confidence.level)){
      object$lower <- object$transformation$inverse(object$lower)
      object$upper <- object$transformation$inverse(object$upper)
    }
  }
  result$effect <- array(object$fit,     
                         dim=sapply(object$variables, function(x) length(x$levels)),
                         dimnames=lapply(object$variables, function(x) x$levels))
  if (!is.null(object$se)){
    result$lower.header <- paste('\n Lower', round(100*object$confidence.level, 2), 
                                 'Percent Confidence Limits\n')
    result$lower <- array(object$lower,   
                          dim=sapply(object$variables, function(x) length(x$levels)),
                          dimnames=lapply(object$variables, function(x) x$levels))
    result$upper.header <- paste('\n Upper', round(100*object$confidence.level, 2),
                                 'Percent Confidence Limits\n')
    result$upper <- array(object$upper,   
                          dim=sapply(object$variables, function(x) length(x$levels)),
                          dimnames=lapply(object$variables, function(x) x$levels))
  }
  if (object$discrepancy > 1e-3) result$warning <- paste("\nWarning: There is an average discrepancy of", 
                                                         round(object$discrepancy, 3),
                                                         "percent \n     in the 'safe' predictions for effect", object$term, '\n')
  class(result) <- "summary.eff"
  result
}

print.summary.eff <- function(x, ...){
  cat(x$header)
  if (x$offset != 0) cat("\noffset = ", x$offset, "\n\n")
  print(x$effect, ...)
  if (!is.null(x$lower)){
    cat(x$lower.header)
    print(x$lower, ...)
    cat(x$upper.header)
    print(x$upper, ...)
  }
  if (!is.null(x$thresholds)){
    cat("\nThresholds:\n")
    print(x$thresholds, ...)
  }
  if (!is.null(x$warning)) cat(x$warning)
  invisible(x)
}

print.eff <- function(x, type=c("response", "link"), ...){
  cat(paste("\n", gsub(":", "*", x$term), 'effect\n'))
  if (x$offset != 0) cat("\noffset = ", x$offset, "\n\n")
  type <- match.arg(type)
  if (type == "response") x$fit <- x$transformation$inverse(x$fit)
  table <- array(x$fit,     
                 dim=sapply(x$variables, function(x) length(x$levels)),
                 dimnames=lapply(x$variables, function(x) x$levels))
  print(table, ...)
  if (x$discrepancy > 1e-3) cat(paste("\nWarning: There is an average discrepancy of", 
                                      round(x$discrepancy, 3),
                                      "percent \n     in the 'safe' predictions for effect", x$term, '\n'))
  invisible(x)
}

print.efflist <- function(x, ...){
  cat(" model: ")
  form <- x[[1]]$formula
  attributes(form) <- NULL
  print(form)
  for (effect in names(x)){
    print(x[[effect]], ...)
  }
  invisible(x) 
}

summary.efflist <- function(object, ...){
  cat(" model: ")
  form <- object[[1]]$formula
  attributes(form) <- NULL
  print(form)
  for (effect in names(object)){
    print(summary(object[[effect]], ...))
  }
  invisible(NULL) 
}


print.effpoly <- function(x, type=c("probability", "logits"), ...){
  type <- match.arg(type)
  x.frame <-as.data.frame(x)
  n.predictors <- length(names(x$x))
  predictors <- names(x.frame)[1:n.predictors]
  y.lev <- x$y.lev
  ylevel.names <- make.names(paste("prob",y.lev))
  colnames(x$prob) <- colnames(x$logit) <- ylevel.names
  y.categories <- matrix(0, nrow=length(x.frame[,predictors[1]]), ncol=length(y.lev))
  for (i in 1:length(y.lev)){
    level <- which(colnames(x$prob)[i] == ylevel.names)
    y.categories[,i] <-  rep(y.lev[level], length(y.categories[,i]))
  }
  y.categories <- as.vector(y.categories)
  y.categories <- factor(y.categories)
  for (i in 1:length(y.lev)){
    cat(paste("\n", gsub(":", "*", x$term), " effect (", type,") for ", y.lev[i], "\n", sep=""))    
    table <- array(if (type == "probability") {x$prob[y.categories==y.lev[i]]}
                   else {x$logit[y.categories==y.lev[i]]},     
                   dim=sapply(x$variables, function(x) length(x$levels)),
                   dimnames=lapply(x$variables, function(x) x$levels))
    print(table, ...)
  }
  if (x$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", 
                                     round(x$discrepancy, 2),
                                     "percent \n     in the 'safe' predictions for effect", x$term, '\n'))
  invisible(x)
}

summary.effpoly <- function(object, type=c("probability", "logits"), ...){
  type <- match.arg(type)
  x.frame <-as.data.frame(object)
  n.predictors <- length(names(object$x))
  predictors <- names(x.frame)[1:n.predictors]
  y.lev <- object$y.lev
  ylevel.names <- make.names(paste("prob",y.lev))
  colnames(object$prob) <- colnames(object$logit) <- 
    colnames(object$lower.logit) <- colnames(object$upper.logit) <- 
    colnames(object$lower.prob) <- colnames(object$upper.prob)<- ylevel.names
  y.categories <-matrix(0, nrow=length(x.frame[,predictors[1]]), ncol=length(y.lev))
  for (i in 1:length(y.lev)){
    level <- which(colnames(object$prob)[i] == ylevel.names)
    y.categories[,i] <- rep(y.lev[level], length(y.categories[,i]))
  }
  y.categories <- as.vector(y.categories)
  y.categories <- factor(y.categories)
  for (i in 1:length(y.lev)){
    cat(paste("\n", gsub(":", "*", object$term), " effect (" , type, ") for ", y.lev[i], "\n", sep=""))    
    table <- array(if (type == "probability") {object$prob[y.categories==y.lev[i]]}
                   else {object$logit[y.categories==y.lev[i]]},     
                   dim=sapply(object$variables, function(x) length(x$levels)),
                   dimnames=lapply(object$variables, function(x) x$levels))
    print(table, ...)
  }
  if (is.null(object$confidence.level)) return(invisible(NULL))
  for (i in 1:length(y.lev)){
    cat(paste("\n", 'Lower', object$confidence.level*100, 'Percent Confidence Limits for'
              , y.lev[i],'\n'))
    table <- if (type == "probability") object$lower.prob else object$lower.logit
    table <- array(table[y.categories==y.lev[i]],     
                   dim=sapply(object$variables, function(x) length(x$levels)),
                   dimnames=lapply(object$variables, function(x) x$levels))
    print(table, ...)
  }
  for (i in 1:length(y.lev)){
    cat(paste("\n", 'Upper', object$confidence.level*100, 'Percent Confidence Limits for'
              , y.lev[i],'\n'))
    table <- if (type == "probability") object$upper.prob else object$upper.logit
    table <- array(table[y.categories==y.lev[i]],     
                   dim=sapply(object$variables, function(x) length(x$levels)),
                   dimnames=lapply(object$variables, function(x) x$levels))
    print(table, ...)
  }
  if (object$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", 
                                          round(object$discrepancy, 2),
                                          "percent \n     in the 'safe' predictions for effect", object$term, '\n'))
  invisible(NULL)
}

print.efflatent <- function(x, ...){
  cat(paste("\n", gsub(":", "*", x$term), 'effect\n'))
  table <- array(x$fit,     
                 dim=sapply(x$variables, function(x) length(x$levels)),
                 dimnames=lapply(x$variables, function(x) x$levels))
  print(table, ...)
  cat("\nThresholds:\n")
  print(x$thresholds, ...)
  if (x$discrepancy > 0.1) cat(paste("\nWarning: There is an average discrepancy of", 
                                     round(x$discrepancy, 3),
                                     "percent \n     in the 'safe' predictions for effect", x$term, '\n'))
  invisible(x)
}

summary.efflatent <- function(object, ...){
  result <- list()
  result$header <- paste("\n", gsub(":", "*", object$term), 'effect\n')
  result$effect <- array(object$fit,     
                         dim=sapply(object$variables, function(x) length(x$levels)),
                         dimnames=lapply(object$variables, function(x) x$levels))
  if (!is.null(object$se)){
    result$lower.header <- paste('\n Lower', round(100*object$confidence.level, 2), 
                                 'Percent Confidence Limits\n')
    result$lower <- array(object$lower,   
                          dim=sapply(object$variables, function(x) length(x$levels)),
                          dimnames=lapply(object$variables, function(x) x$levels))
    result$upper.header <- paste('\n Upper', round(100*object$confidence.level, 2),
                                 'Percent Confidence Limits\n')
    result$upper <- array(object$upper,   
                          dim=sapply(object$variables, function(x) length(x$levels)),
                          dimnames=lapply(object$variables, function(x) x$levels))
  }
  result$thresholds <- object$thresholds
  if (object$discrepancy > 0.1) result$warning <- paste("\nWarning: There is an average discrepancy of", 
                                                        round(object$discrepancy, 3),
                                                        "percent \n     in the 'safe' predictions for effect", object$term, '\n')
  class(result) <- "summary.eff"
  result
}

Try the effects package in your browser

Any scripts or data that you put into this service are public.

effects documentation built on July 13, 2022, 5:06 p.m.