library(knitr) knitr::opts_chunk$set( comment = ">", warning = FALSE, message = FALSE ) options(digits = 2) options(knitr.kable.NA = "") set.seed(333)
library(effectsize)
To add support for you model, create a new .anova_es() method function. This functions should generally do 3 things:
The input data frame must have these columns:
- Parameter (char) - The name of the parameter or, more often, the term.
- Sum_Squares (num) - The sum of squares.
- df (num) - The degrees of freedom associated with the Sum_Squares.
- Mean_Square_residuals (num; optional) - if not present, is calculated as Sum_Squares / df.
(Any other column is ignored.)
And exactly 1 row Where Parameter is Residual.
Optionally, one of the rows can have a (Intercept) value for Parameter.
An example of a minimally valid data frame:
min_aov <- data.frame( Parameter = c("(Intercept)", "A", "B", "Residuals"), Sum_Squares = c(30, 40, 10, 100), df = c(1, 1, 2, 50) )
Pass the data frame to .es_aov_simple():
.es_aov_simple( min_aov, type = "eta", partial = TRUE, generalized = FALSE, include_intercept = FALSE, ci = 0.95, alternative = "greater", verbose = TRUE )
The output is a data frame with the columns: Parameter, the effect size, and (optionally) CI + CI_low + CI_high,
And with the following attributes: generalized, ci, alternative, anova_type (NA or NULL), approximate.
You can then set the anova_type attribute to {1, 2, 3, or NA} and return the output.
(e.g., aovlist models.)
The input data frame must have these columns:
Group (char) - The strataParameter (char)Sum_Squares (num)df (num)Mean_Square_residuals (num; optional)And exactly 1 row per Group Where Parameter is Residual.
Optionally, one of the rows can have a (Intercept) value for Parameter.
An example of a minimally valid data frame:
min_aovlist <- data.frame( Group = c("S", "S", "S:A", "S:A"), Parameter = c("(Intercept)", "Residuals", "A", "Residuals"), Sum_Squares = c(34, 21, 34, 400), df = c(1, 12, 4, 30) )
Pass the data frame to .es_aov_strata(), along with a list of predictors (including the stratifying variables) to the DV_names argument:
.es_aov_strata( min_aovlist, DV_names = c("S", "A"), type = "omega", partial = TRUE, generalized = FALSE, ci = 0.95, alternative = "greater", verbose = TRUE, include_intercept = TRUE )
The output is a data frame with the columns: Group, Parameter, the effect size, and (optionally) CI + CI_low + CI_high,
And with the following attributes: generalized, ci, alternative, approximate.
You can then set the anova_type attribute to {1, 2, 3, or NA} and return the output.
When sums of squares cannot be extracted, we can still get approximate effect sizes based on the F_to_eta2() family of functions.
The input data frame must have these columns:
Parameter (char)F (num) - The F test statistic.df (num) - effect degrees of freedom.t col instead, in which case df is set to 1, and F is t^2).df_error (num) - error degrees of freedom.Optionally, one of the rows can have (Intercept) as the Parameter.
An example of a minimally valid data frame:
min_anova <- data.frame( Parameter = c("(Intercept)", "A", "B"), F = c(4, 7, 0.7), df = c(1, 1, 2), df_error = 34 )
Pass the table to .es_aov_table():
.es_aov_table( min_anova, type = "eta", partial = TRUE, generalized = FALSE, include_intercept = FALSE, ci = 0.95, alternative = "greater", verbose = TRUE )
The output is a data frame with the columns: Parameter, the effect size, and (optionally) CI + CI_low + CI_high,
And with the following attributes: generalized, ci, alternative, approximate.
You can then set the anova_type attribute to {1, 2, 3, or NA} and return the output, and optionally the approximate attribute, and return the output.
Let's fit a simple linear model and change its class:
mod <- lm(mpg ~ factor(cyl) + am, mtcars) class(mod) <- "superMODEL"
We now need a new .anova_es.superMODEL function:
.anova_es.superMODEL <- function(model, ...) { # Get ANOVA table anov <- suppressWarnings(stats:::anova.lm(model)) anov <- as.data.frame(anov) # Clean up anov[["Parameter"]] <- rownames(anov) colnames(anov)[2:1] <- c("Sum_Squares", "df") # Pass out <- .es_aov_simple(anov, ...) # Set attribute attr(out, "anova_type") <- 1 out }
# This is for: https://github.com/easystats/easystats/issues/348 .anova_es.superMODEL <<- .anova_es.superMODEL
And... that's it! Our new superMODEL class of models is fully supported!
eta_squared(mod) eta_squared(mod, partial = FALSE) omega_squared(mod) # Etc...
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.