Nothing
#' Calibrate a distribution/niche model using cross-validation
#'
#' This function is an extension of any of the \code{trainXYZ} functions for calibrating species distribution and ecological niche models. This function uses the \code{trainXYZ} function to calibrate and evaluate a suite of models using cross-validation. The models are evaluated against withheld data to determine the optimal settings for a "final" model using all available data. The function returns a set of models and/or a table with statistics on each model. The statistics represent various measures of model accuracy, and are calculated against training and test sites (separately).
#'
#' @param data Data frame or matrix. Response variable and environmental predictors (and no other fields) for presences and non-presence sites.
#' @param resp Character or integer. Name or column index of response variable. Default is to use the first column in \code{data}.
#' @param preds Character vector or integer vector. Names of columns or column indices of predictors. Default is to use the second and subsequent columns in \code{data} as predictors.
#' @param folds Either a numeric vector, or matrix or data frame which specify which rows in \code{data} belong to which folds:
#' \itemize{
#' \item If a vector, there must be one value per row in \code{data}. If there are \emph{K} unique values in the vector, then \emph{K} unique models will be trained. Each model will use all of the data except for rows that match a particular value in the \code{folds} vector. For example, if \code{folds = c(1, 1, 1, 2, 2, 2, 3, 3, 3)}, then three models will be trained, one with all rows that match the 2s and 3s, one with all rows matching 1s and 2s, and one will all rows matching 1s and 3s. The models will be evaluated against the training data and against the withheld data. Use \code{NA} to exclude rows from all testing/training. The default is to construct 5 folds of roughly equal size.
#' \item If a matrix or data frame, there must be one row per row in \code{data}. Each column corresponds to a different model to be trained. For a given column there should be only two unique values, plus possibly \code{NA}s. Of the two values, the lesser value will be used to identify the calibration data and the greater value the evaluation data. Rows with \code{NA}s will be ignored and not used in training or testing. For example, a particular column could contain 1s, 2, and \code{NA}s. Data rows corresponding to 1s will be used as training data, data rows corresponding to 2s as test data, and rows with \code{NA} are dropped. The \code{NA} flag is useful for creating spatially-structured cross-validation folds where training and test sites are separated (spatially) by censored (ignored) data.
#' }
#' @param trainFx Function, name of the \code{trainXYZ} function to use. Currently the functions/algorithms supported are \code{\link[enmSdmX]{trainBRT}}, \code{\link[enmSdmX]{trainGAM}}, \code{\link[enmSdmX]{trainGLM}}, \code{\link[enmSdmX]{trainMaxEnt}}, \code{\link[enmSdmX]{trainRF}}, and \code{\link[enmSdmX]{trainNS}}.
#' @param ... Arguments to pass to the "trainXYZ" function.
#' @param weightEvalTrain Logical, if \code{TRUE} (default) and an argument named \code{w} is specified in \code{...}, then evaluation statistics that support weighting will use the weights specified by \code{w} \emph{for the "train" version of evaluation statistics}. If \code{FALSE}, there will be no weighting of sites. Note that this applies \emph{only} to the calculation of evaluation statistics, not to model calibration. If \code{w} is supplied, they will be used for model calibration.
#' @param weightEvalTest Logical, if \code{TRUE} (default) and an argument named \code{w} is specified in \code{...}, then evaluation statistics that support weighting will use the weights specified by \code{w} \emph{for the "test" version of evaluation statistics}. If \code{FALSE}, there will be no weighting of sites. Note that this applies \emph{only} to the calculation of evaluation statistics. If \code{w} is supplied, they will be used for model calibration.
#' @param na.rm Logical, if \code{TRUE} then remove \code{NA} predictions before calculating evaluation statistics. If \code{FALSE} (default), propagate \code{NA}s (meaning if predictions contain \code{NA}s, then the evaluation statistic will most likely also be \code{NA}.)
#' @param outputModels If \code{TRUE}, then return all models (in addition to tables reporting tuning paramaeters and evaluation metrics). \emph{WARNING}: Depending on the type of model and amount of data, retuning all models may produce objects that are very large in memory.
#' @param verbose Numeric. If 0 show no progress updates. If > 0 then show minimal progress updates for this function only. If > 1 show detailed progress for this function. If > 2 show detailed progress plus detailed progress for the \code{trainXYZ} function.
#'
#' @return A list object with several named elements:
#' \itemize{
#' \item \code{meta}: Meta-data on the model call.
#' \item \code{folds}: The \code{folds} object.
#' \item \code{models} (if \code{outputModels} is \code{TRUE}): A list of model objects, one per data fold.
#' \item \code{tuning}: One data frame per k-fold, each containing evaluation statistics for all candidate models in the fold. In addition to algorithm-specific fields, these consist of:
#' \itemize{
#' \item \code{'logLoss'}: Log loss. Higher (less negative) values imply better fit.
#' \item \code{'cbi'}: Continuous Boyce Index (CBI). Calculated with \code{\link[enmSdmX]{evalContBoyce}}.
#' \item \code{'auc'}: Area under the receiver-operator characteristic curve (AUC). Calculated with \code{\link[enmSdmX]{evalAUC}}.
#' \item \code{'tss'}: Maximum value of the True Skill Statistic. Calculated with \code{\link[enmSdmX]{evalTSS}}.
#' \item \code{'msss'}: Sensitivity and specificity calculated at the threshold that maximizes sensitivity (true presence prediction rate) plus specificity (true absence prediction rate).
#' \item \code{'mdss'}: Sensitivity (se) and specificity (sp) calculated at the threshold that minimizes the difference between sensitivity and specificity.
#' \item \code{'minTrainPres'}: Sensitivity (se) and specificity (sp) at the greatest threshold at which all training presences are classified as "present".
#' \item \code{'trainSe95'} and/or \code{'trainSe90'}: Sensitivity (se) and specificity (sp) at the threshold that ensures either 95 or 90 percent of all training presences are classified as "present" (training sensitivity = 0.95 or 0.9).
#' }
#' }
#'
#' @references
#' Fielding, A.H. and J.F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. \emph{Environmental Conservation} 24:38-49. \doi{10.1017/S0376892997000088}
#' La Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J., and Bretagnolle, V. 2014. Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation. \emph{Global Ecology and Biogeography} 23:811-820. \doi{https://doi.org/10.1111/geb.12161}
#' Radosavljevic, A. and Anderson, R.P. 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation. \emph{Journal of Biogeography} 41:629-643. \doi{10.1111/jbi.12227}
#'
#' @details In some cases models do not converge (e.g., boosted regression trees and generalized additive models sometimes suffer from this issue). In this case the model will be skipped, but a data frame with the k-fold and model number in the fold will be returned in the $meta element in the output. If no models converged, then this data frame will be empty.
#'
#' @seealso \code{\link[enmSdmX]{summaryByCrossValid}}, \code{\link[enmSdmX]{trainBRT}}, \code{\link[enmSdmX]{trainGAM}}, \code{\link[enmSdmX]{trainGLM}}, \code{\link[enmSdmX]{trainMaxEnt}}, \code{\link[enmSdmX]{trainMaxNet}}, \code{\link[enmSdmX]{trainNS}}, \code{\link[enmSdmX]{trainRF}}
#'
#' @example man/examples/trainByCrossValid_examples.r
#'
#' @export
trainByCrossValid <- function(
data,
resp = names(data)[1],
preds = names(data)[2:ncol(data)],
folds = predicts::folds(data),
trainFx = enmSdmX::trainGLM,
...,
weightEvalTrain = TRUE,
weightEvalTest = TRUE,
na.rm = FALSE,
outputModels = TRUE,
verbose = 0
) {
### for debugging
#################
if (FALSE) {
folds <- predicts::folds(data)
trainFx <- enmSdmX::trainGLM
weightEvalTrain <- TRUE
weightEvalTest <- TRUE
na.rm <- FALSE
outputModels <- TRUE
verbose <- 1
}
ellipses <- list(...)
hasWeights <- ('w' %in% names(ellipses))
# response and predictors
if (inherits(resp, c('integer', 'numeric'))) resp <- names(data)[resp]
if (inherits(preds, c('integer', 'numeric'))) preds <- names(data)[preds]
# get info about folds
if (inherits(folds, c('matrix', 'data.frame'))) {
foldsType <- 'custom'
foldCodes <- stats::na.omit(sort(unique(c(as.matrix(folds)))))
if (length(foldCodes) != 2) stop('"folds" matrix must have at least two unique values (aside from NAs).')
numFolds <- ncol(folds)
# codes for train/test sets
trainCode <- foldCodes[1]
testCode <- foldCodes[2]
} else {
foldsType <- 'simple'
foldCodes <- stats::na.omit(sort(unique(folds)))
numFolds <- length(foldCodes)
}
# create list of threshold types to be analyzed
# have to do this because evalThresholdStats uses slightly different names
# since it does not know if a set of presences is test/train
threshTypes <- c('msss', 'mdss', 'minTrainPres', 'trainSe95', 'trainSe90')
### by fold
###########
# models and their evaluation statistics
tuning <- models <- list()
nonConvergedModels <- data.frame()
for (k in 1L:numFolds) {
if (verbose > 0) omnibus::say('Modeling k = ', k, ' on ', date(), '...', post=ifelse(verbose > 1, 2, 1), pre=ifelse(verbose > 1, 2, 0))
### get training/testing data according to type of folds being used
###################################################################
# SIMPLE folds
if (foldsType == 'simple') {
# copy data
thisData <- data
# drop NAs
nas <- which(is.na(folds))
if (length(nas) > 0) {
thisData <- thisData[-nas, , drop=FALSE]
if (hasWeights) w <- w[-nas]
}
# train/test data
testCode <- foldCodes[k]
trainData <- data[folds != testCode, c(resp, preds), drop=FALSE]
testData <- data[folds == testCode, c(resp, preds), drop=FALSE]
if (hasWeights) {
trainWeights <- ellipses$w[folds != testCode]
testWeights <- ellipses$w[folds == testCode]
} else {
trainWeights <- rep(1, nrow(trainData))
testWeights <- rep(1, nrow(testData))
}
# CUSTOM folds
} else {
# copy data and get folds codes
thisData <- data[ , c(resp, preds)]
thisFolds <- folds[ , k, drop=TRUE]
if (hasWeights) thisWeights <- ellipses$w
# drop NAs
nas <- which(is.na(thisFolds))
if (length(nas) > 0) {
thisData <- thisData[-nas, , drop=FALSE]
if (hasWeights) thisWeights <- thisWeights[-nas]
thisFolds <- thisFolds[-nas]
}
# train/test data
trainData <- thisData[which(thisFolds == trainCode), , drop=FALSE]
testData <- thisData[which(thisFolds == testCode), , drop=FALSE]
if (hasWeights) {
trainWeights <- thisWeights[which(thisFolds == trainCode)]
testWeights <- thisWeights[which(thisFolds == testCode)]
} else {
trainWeights <- rep(1, nrow(trainData))
testWeights <- rep(1, nrow(testData))
}
}
args <- utils::modifyList(ellipses, list(data=trainData, resp=resp, preds=preds, w=trainWeights, verbose=verbose > 2, out=c('models', 'tuning')))
### train model
###############
thisOut <- do.call(trainFx, args=args)
kModels <- thisOut$models
kTuning <- thisOut$tuning
rm(thisOut)
gc()
kTuning <- omnibus::insertCol(data.frame(k = rep(k, nrow(kTuning))), kTuning, at=1)
### indices and weights for this fold
#####################################
# training
whichTrainPres <- which(trainData[ , resp] == 1)
whichTrainContrast <- which(trainData[ , resp] == 0)
# "training" evaluation weights
if (hasWeights & weightEvalTrain) {
trainPresWeights <- trainWeights[whichTrainPres]
trainContrastWeights <- trainWeights[whichTrainContrast]
} else {
trainPresWeights <- rep(1, length(whichTrainPres))
trainContrastWeights <- rep(1, length(whichTrainContrast))
}
# testing
whichTestPres <- which(testData[ , resp] == 1)
whichTestContrast <- which(testData[ , resp] == 0)
# "testing" evaluation weights
if (hasWeights & weightEvalTest) {
testPresWeights <- testWeights[whichTestPres]
testContrastWeights <- testWeights[whichTestContrast]
} else {
testPresWeights <- rep(1, length(whichTestPres))
testContrastWeights <- rep(1, length(whichTestContrast))
}
insert <- data.frame(
numTrainPres = if (na.rm) { length(stats::na.omit(whichTrainPres)) } else { length(whichTrainPres) },
numTrainContrast = if (na.rm) { length(stats::na.omit(whichTrainContrast)) } else { length(whichTrainContrast) },
numTestPres = if (na.rm) { length(stats::na.omit(whichTestPres)) } else { length(whichTestPres) },
numTestContrast = if (na.rm) { length(stats::na.omit(whichTestContrast)) } else { length(whichTestContrast) },
trainPresWeights = sum(trainPresWeights, na.rm=na.rm),
trainContrastWeights = sum(trainContrastWeights, na.rm=na.rm),
testPresWeights = sum(testPresWeights, na.rm=na.rm),
testContrastWeights = sum(testContrastWeights, na.rm=na.rm)
)
insert <- insert[rep(1, nrow(kTuning)), ]
kTuning <- omnibus::insertCol(insert, kTuning, at='k', before=FALSE)
### evaluate model vs training data
###################################
for (countModel in seq_along(kModels)) {
kModel <- kModels[[countModel]]
# if model converged
if (is.null(kModel)) {
nonConvergedModels <- rbind(
nonConvergedModels,
omnibus::insertCol(
data.frame(modelNumber = countModel),
into=kTuning[countModel, ],
at='k',
before=FALSE
)
)
} else {
# predict to training data
predToTrain <- predictEnmSdm(model=kModel, newdata=trainData, ...)
# predToTrain <- predictEnmSdm(model=kModel, newdata=trainData)
predToTrainPres <- predToTrain[whichTrainPres]
predToTrainContrast <- predToTrain[whichTrainContrast]
# predict to testing data
predToTest <- predictEnmSdm(model=kModel, newdata=testData, ...)
# predToTest <- predictEnmSdm(model=kModel, newdata=testData)
predToTestPres <- predToTest[whichTestPres]
predToTestContrast <- predToTest[whichTestContrast]
# log loss
metricTrain <- -1 * mean(c(trainPresWeights * log(predToTrainPres), trainContrastWeights * log(1 - predToTrainContrast)), na.rm=na.rm)
metricTest <- -1 * mean(c(testPresWeights * log(predToTestPres), testContrastWeights * log(1 - predToTestContrast)), na.rm=na.rm)
if (countModel == 1) kTuning$logLossDelta <- kTuning$logLossTest <- kTuning$logLossTrain <- NA
kTuning$logLossTrain[countModel] <- metricTrain
kTuning$logLossTest[countModel] <- metricTest
kTuning$logLossDelta[countModel] <- metricTrain - metricTest
# CBI
# metricTrain <- evalContBoyce(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm, ...)
# metricTest <- evalContBoyce(pres=predToTestPres, contrast=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm, ...)
metricTrain <- evalContBoyce(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm)
metricTest <- evalContBoyce(pres=predToTestPres, contrast=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm)
if (countModel == 1) kTuning$cbiDelta <- kTuning$cbiTest <- kTuning$cbiTrain <- NA
kTuning$cbiTrain[countModel] <- metricTrain
kTuning$cbiTest[countModel] <- metricTest
kTuning$cbiDelta[countModel] <- metricTrain - metricTest
# AUC
metricTrain <- evalAUC(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm)
metricTest <- evalAUC(pres=predToTestPres, contrast=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm)
if (countModel == 1) kTuning$aucDelta <- kTuning$aucTest <- kTuning$aucTrain <- NA
kTuning$aucTrain[countModel] <- metricTrain
kTuning$aucTest[countModel] <- metricTest
kTuning$aucDelta[countModel] <- metricTrain - metricTest
# TSS
# metricTrain <- evalTSS(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm, ...)
# metricTest <- evalTSS(pres=predToTestPres, contrast=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm, ...)
metricTrain <- evalTSS(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm)
metricTest <- evalTSS(pres=predToTestPres, contrast=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm)
if (countModel == 1) kTuning$tssDelta <- kTuning$tssTest <- kTuning$tssTrain <- NA
kTuning$tssTrain[countModel] <- metricTrain
kTuning$tssTest[countModel] <- metricTest
kTuning$tssDelta[countModel] <- metricTrain - metricTest
# threshold-dependent
for (thisThreshType in threshTypes) {
# threshold
if (thisThreshType == 'minTrainPres') {
threshCode <- 'minPres'
sensitivity <- 0
} else if (thisThreshType == 'trainSe95') {
threshCode <- 'sensitivity'
sensitivity <- 0.95
} else if (thisThreshType == 'trainSe90') {
threshCode <- 'sensitivity'
sensitivity <- 0.9
} else {
threshCode <- thisThreshType
sensitivity <- 0
}
# get thresholds
# thresholds <- evalThreshold(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm, ...)
thresholds <- evalThreshold(pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, sensitivity=sensitivity, na.rm=na.rm)
thold <- thresholds[[threshCode]]
# evaluate
trainEval <- evalThresholdStats(thold, pres=predToTrainPres, contrast=predToTrainContrast, presWeight=trainPresWeights, contrastWeight=trainContrastWeights, na.rm=na.rm)
testEval <- evalThresholdStats(thold, pres=predToTestPres, contrast=predToTestContrast, presWeight=testPresWeights, contrastWeight=testContrastWeights, na.rm=na.rm)
# remember
if (countModel == 1) {
kTuning$TEMP1 <- kTuning$TEMP2 <- kTuning$TEMP3 <- kTuning$TEMP4 <- kTuning$TEMP5 <- kTuning$TEMP6 <- kTuning$TEMP7 <- NA
names(kTuning)[(ncol(kTuning) - 6):ncol(kTuning)] <- paste0(thisThreshType, c('Thold', 'SeTrain', 'SeTest', 'SeDelta', 'SpTrain', 'SpTest', 'SpDelta'))
}
kTuning[countModel, paste0(thisThreshType, 'Thold')] <- thold
kTuning[countModel, paste0(thisThreshType, 'SeTrain')] <- trainEval[['sensitivity']]
kTuning[countModel, paste0(thisThreshType, 'SeTest')] <- testEval[['sensitivity']]
kTuning[countModel, paste0(thisThreshType, 'SeDelta')] <- trainEval[['sensitivity']] - testEval[['sensitivity']]
kTuning[countModel, paste0(thisThreshType, 'SpTrain')] <- trainEval[['specificity']]
kTuning[countModel, paste0(thisThreshType, 'SpTest')] <- testEval[['specificity']]
kTuning[countModel, paste0(thisThreshType, 'SpDelta')] <- trainEval[['specificity']] - testEval[['specificity']]
} # next threshold-dependent evaluation metric!
} # if model converged
} # next model in this k-fold
tuning[[k]] <- kTuning
if (outputModels) models[[k]] <- kModels
gc()
} # next fold
### return
##########
output <- list()
someModel <- FALSE
k <- 1L
while (inherits(someModel, 'logical') & k <= numFolds) {
someModel <- models[[k]][[1L]]
k <- k + 1L
}
trainFxName <- if (inherits(someModel, 'MaxEnt_model')) {
'trainMaxEnt'
} else if (inherits(someModel, 'maxnet')) {
'trainMaxNet'
} else if (inherits(someModel, 'gbm')) {
'trainBRT'
} else if (inherits(someModel, 'gam')) {
'trainGAM'
} else if (inherits(someModel, 'glm')) {
'trainGLM'
} else if (inherits(someModel, c('randomForest', 'ranger'))) {
'trainRF'
}
# meta data
meta <- list(
trainFxName = trainFxName,
resp = resp,
preds = preds,
sensitivity = sensitivity,
weightEvalTrain = weightEvalTrain,
weightEvalTest = weightEvalTest,
na.rm = na.rm,
outputModels = outputModels,
nonConvergedModels = nonConvergedModels
)
if (length(ellipses) > 0) {
for (i in seq_along(ellipses)) {
meta <- c(meta, ellipses[i])
}
}
output$meta <- meta
output$folds <- folds
# models and tuning
if (outputModels) output$models <- models
output$tuning <- tuning
# class(output) <- c(class(output), 'crossValid')
output
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.