Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
message = FALSE,
fig.width = 10
)
## ----load, echo=FALSE, message=FALSE------------------------------------------
library(exuber)
options(exuber.show_progress = FALSE)
library(dplyr)
library(ggplot2)
library(tidyr)
## ----options, echo=FALSE------------------------------------------------------
options(exuber.parallel = FALSE)
## ----tstats-cv----------------------------------------------------------------
set.seed(123)
sims <- tibble(
sim_psy1 = sim_psy1(100),
sim_psy2 = sim_psy2(100),
sim_evans = sim_blan(100),
sim_blan = sim_evans(100),
)
# Esimation
estimation <- radf(sims, lag = 1)
# Critical Values
crit_values <- radf_mc_cv(nrow(sims))
## ----autoplot-basic-----------------------------------------------------------
autoplot(estimation, crit_values)
## ----autoplot-color-theme-----------------------------------------------------
autoplot(estimation, crit_values) +
scale_color_manual(values = c("grey","black")) +
theme_classic()
## ----autoplot-shade-----------------------------------------------------------
autoplot(estimation, crit_values, shade_opt = shade(fill = "pink", opacity = 0.3))
## ----join-sets----------------------------------------------------------------
joined <- augment_join(estimation, crit_values)
joined
## ----facet-joined-------------------------------------------------------------
joined %>%
ggplot(aes(x = index)) +
geom_line(aes(y = tstat)) +
geom_line(aes(y = crit)) +
facet_grid(sig + stat ~ id , scales = "free_y")
## ----facet-joined-theme-exuber, warning=FALSE---------------------------------
joined %>%
pivot_longer(cols = c("tstat", "crit"), names_to = "nms") %>%
ggplot(aes(x = index, y = value, col = nms)) +
geom_line() +
facet_grid(sig + stat ~ id , scales = "free_y") +
scale_exuber_manual() +
theme_exuber()
## ----distributions------------------------------------------------------------
distr <- radf_mc_distr(n = 300)
autoplot(distr)
## ----ecdf---------------------------------------------------------------------
library(tidyr)
distr %>%
tidy() %>%
rename_all(~ stringr::str_to_upper(.)) %>%
gather(Statistic, value, factor_key = TRUE) %>%
ggplot(aes(value, color = Statistic)) +
stat_ecdf() +
ggtitle("Empirical Cumulative Distribution") +
geom_hline(yintercept = 0.95, linetype = "dashed") + theme_bw()
## ----lapply-arrange-----------------------------------------------------------
library(gridExtra)
# To choose only positive series (i.e. statistically significant for 5%)
positive_series <- diagnostics(estimation, crit_values)$positive
# Through a loop on positive series
plot_list1 <- list()
for (as in positive_series) {
plot_list1[[as]] <- autoplot(estimation, crit_values, select_series = as)
}
# Alternatively with lapply
plot_list2 <- lapply(positive_series, function(x) autoplot(estimation, crit_values, select_series = x))
names(plot_list2) <- positive_series
do.call(gridExtra::grid.arrange, plot_list1)
## ----example-old--------------------------------------------------------------
plot_list1[[1]] <- plot_list1[[1]] + theme_classic()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.