Nothing
#' Load and parse SR Research EyeLink `.asc` files
#'
#' This function builds upon the [eyelinker::read.asc()] function to parse the
#' messages and metadata within the EyeLink `.asc` file. After loading and
#' additional processing, this function returns an S3 `eyeris` class for use in
#' all subsequent `eyeris` pipeline steps and functions.
#'
#' @note
#' This function is part of the `glassbox()` preprocessing pipeline and is not
#' intended for direct use in most cases. Provide parameters via
#' `load_asc = list(...)`.
#'
#' Advanced users may call it directly if needed.
#'
#' @details
#' This function is automatically called by `glassbox()` by default. If
#' needed, customize the parameters for `load_asc` by providing a parameter
#' list.
#'
#' Users should prefer using `glassbox()` rather than invoking this
#' function directly unless they have a specific reason to customize the
#' pipeline manually.
#'
#' @param file An SR Research EyeLink `.asc` file generated by the official
#' EyeLink `edf2asc` command
#' @param block Optional block number specification. The following are
#' valid options:
#' * "auto" (default): Automatically handles multiple recording segments
#' embedded within the same `.asc` file. We recommend using this default
#' as this is likely the safer choice then assuming a single-block
#' recording (unless you know what you're doing).
#' * `NULL`: Omits block column. Suitable for single-block recordings.
#' * Numeric value: Manually sets block number based on the value
#' provided here.
#' @param binocular_mode Optional binocular mode specification. The
#' following are valid options:
#' * "average" (default): Averages the left and right eye pupil sizes.
#' * "left": Uses only the left eye pupil size.
#' * "right": Uses only the right eye pupil size.
#' * "both": Uses both the left and right eye pupil sizes independently.
#'
#' @return An object of S3 class `eyeris` with the following attributes:
#' \enumerate{
#' \item `file`: Path to the original `.asc` file.
#' \item `timeseries`: Data frame of all raw time series data from the
#' tracker.
#' \item `events`: Data frame of all event messages and their time
#' stamps.
#' \item `blinks`: Data frame of all blink events.
#' \item `info`: Data frame of various metadata parsed from the file
#' header.
#' \item `latest`: `eyeris` variable for tracking pipeline run history.
#' }
#'
#' For binocular data with `binocular_mode = "both"`, returns a list
#' containing:
#' \enumerate{
#' \item `left`: An `eyeris` object for the left eye data.
#' \item `right`: An `eyeris` object for the right eye data.
#' \item `original_file`: Path to the original `.asc` file.
#' }
#'
#' @seealso [eyelinker::read.asc()] which this function wraps.
#'
#' @seealso [eyeris::glassbox()] for the recommended way to run this step
#' as part of the full eyeris glassbox preprocessing pipeline.
#'
#' @examples
#' demo_data <- eyelink_asc_demo_dataset()
#'
#' demo_data |>
#' eyeris::glassbox(load_asc = list(block = 1))
#'
#' # Other useful parameter configurations
#' ## (1) Basic usage (no block column specified)
#' demo_data |>
#' eyeris::load_asc()
#'
#' ## (2) Manual specification of block number
#' demo_data |>
#' eyeris::load_asc(block = 3)
#'
#' ## (3) Auto-detect multiple recording segments embedded within the same
#' ## file (i.e., the default behavior)
#' demo_data |>
#' eyeris::load_asc(block = "auto")
#'
#' ## (4) Omit block column
#' demo_data |>
#' eyeris::load_asc(block = NULL)
#'
#' @export
load_asc <- function(
file,
block = "auto",
binocular_mode = c(
"average",
"left",
"right",
"both"
)
) {
binocular_mode <- match.arg(binocular_mode)
if (!tools::file_ext(file) %in% c("asc", "gz")) {
cli::cli_abort(sprintf("[EXIT] Error: The file '%s' is not a .asc file.", file))
}
x <- eyelinker::read.asc(
fname = file,
samples = TRUE,
events = TRUE,
parse_all = FALSE
)
# parse metadata
is_mono <- x$info$mono
is_left <- x$info$left
is_right <- x$info$right
if (is_mono) {
if (is_left) {
eye <- "L"
}
if (is_right) eye <- "R"
} else {
if (is_left && is_right) eye <- "LR"
}
hz <- x$info$sample.rate
pupil_type <- tolower(x$info$pupil.dtype)
# binocular handling start ----------------------------------------------
has_left <- all(c("psl", "xpl", "ypl") %in% names(x$raw))
has_right <- all(c("psr", "xpr", "ypr") %in% names(x$raw))
binocular <- has_left && has_right
if (binocular) {
cli::cli_alert_info(
"[INFO] Binocular data detected. Processing {.val {binocular_mode}} mode."
)
# create left and right eye data frames to store original binocular data before merging
x_left <- x
x_right <- x
# left eye
x_left$raw$ps <- x$raw$psl
x_left$raw$xp <- x$raw$xpl
x_left$raw$yp <- x$raw$ypl
x_left$raw$psl <- NULL
x_left$raw$psr <- NULL
x_left$raw$xpl <- NULL
x_left$raw$xpr <- NULL
x_left$raw$ypl <- NULL
x_left$raw$ypr <- NULL
# right eye
x_right$raw$ps <- x$raw$psr
x_right$raw$xp <- x$raw$xpr
x_right$raw$yp <- x$raw$ypr
x_right$raw$psl <- NULL
x_right$raw$psr <- NULL
x_right$raw$xpl <- NULL
x_right$raw$xpr <- NULL
x_right$raw$ypl <- NULL
x_right$raw$ypr <- NULL
left_eyeris <- process_eyeris_data(
x_left,
block,
"left",
hz,
pupil_type,
file,
binocular,
binocular_mode
)
right_eyeris <- process_eyeris_data(
x_right,
block,
"right",
hz,
pupil_type,
file,
binocular,
binocular_mode
)
list_out <- list(
left = left_eyeris,
right = right_eyeris,
original_file = file,
raw_binocular_object = -1
)
class(list_out) <- "eyeris"
if (binocular_mode == "average") {
x$raw$ps <- rowMeans(cbind(x$raw$psl, x$raw$psr), na.rm = TRUE)
x$raw$xp <- rowMeans(cbind(x$raw$xpl, x$raw$xpr), na.rm = TRUE)
x$raw$yp <- rowMeans(cbind(x$raw$ypl, x$raw$ypr), na.rm = TRUE)
x$raw$psl <- NULL
x$raw$psr <- NULL
x$raw$xpl <- NULL
x$raw$xpr <- NULL
x$raw$ypl <- NULL
x$raw$ypr <- NULL
} else if (binocular_mode == "left") {
x$raw$ps <- x$raw$psl
x$raw$xp <- x$raw$xpl
x$raw$yp <- x$raw$ypl
x$raw$psl <- NULL
x$raw$psr <- NULL
x$raw$xpl <- NULL
x$raw$xpr <- NULL
x$raw$ypl <- NULL
x$raw$ypr <- NULL
} else if (binocular_mode == "right") {
x$raw$ps <- x$raw$psr
x$raw$xp <- x$raw$xpr
x$raw$yp <- x$raw$ypr
x$raw$psl <- NULL
x$raw$psr <- NULL
x$raw$xpl <- NULL
x$raw$xpr <- NULL
x$raw$ypl <- NULL
x$raw$ypr <- NULL
} else if (binocular_mode == "both") {
list_out$raw_binocular_object <- list(
left = left_eyeris,
right = right_eyeris
)
return(list_out)
}
if (binocular_mode != "both") {
other_binocular_list_out <- process_eyeris_data(
x,
block,
eye,
hz,
pupil_type,
file,
binocular,
binoc_mode = NULL
)
other_binocular_list_out$raw_binocular_object$left <- left_eyeris
other_binocular_list_out$raw_binocular_object$right <- right_eyeris
return(other_binocular_list_out)
}
}
# binocular handling end ------------------------------------------------
list_out <- process_eyeris_data(
x,
block,
eye,
hz,
pupil_type,
file,
binocular,
binoc_mode = NULL
)
return(list_out)
}
#' Process eyeris data and create eyeris object
#'
#' @param x The eyelinker object
#' @param block Block specification
#' @param eye Eye specification ("L", "R", "LR", "left", "right")
#' @param hz Sample rate
#' @param pupil_type Pupil data type
#' @param file Original file path
#' @param binoc Boolean binocular data detected
#' @param binoc_mode Binocular mode ("average", "left", "right", "both")
#'
#' @return An eyeris object
#' @keywords internal
process_eyeris_data <- function(x, block, eye, hz, pupil_type, file, binoc, binoc_mode) {
# raw data processing
if (eye == "left") {
eye_meta <- "L"
} else if (eye == "right") {
eye_meta <- "R"
} else {
eye_meta <- eye
}
raw_df <- x$raw |>
dplyr::select(
block,
time_orig = time,
pupil_raw = ps,
eye_x = xp,
eye_y = yp
) |>
dplyr::mutate(
eye = eye_meta,
hz = hz,
type = pupil_type
) |>
dplyr::relocate(pupil_raw, .after = type)
# return list object
list_out <- vector("list", length = 8)
names.out <- c(
"file",
"timeseries",
"events",
"blinks",
"info",
"latest",
"binocular",
"binocular_mode"
)
names(list_out) <- names.out
# block handler
if (!is.null(block)) {
if (block == "auto") {
# check existing blocks parsed by eyelinker
existing_blocks <- unique(x$raw$block)
if (length(existing_blocks) > 1) {
# split raw data by eyelinker-detected blocks
list_out$timeseries <- split(
raw_df,
paste0("block_", x$raw$block)
)
list_out$events <- split(
x$msg,
paste0("block_", x$msg$block)
)
list_out$blinks <- split(
x$blinks,
paste0("block_", x$blinks$block)
)
} else {
# if eyelinker parses only 1 block, then use that single block
list_out$timeseries <- list("block_1" = raw_df)
list_out$events <- list("block_1" = x$msg)
list_out$blinks <- list("block_1" = x$blinks)
}
} else if (is.numeric(block)) {
# manually set block number inside the data
list_out$timeseries <- setNames(
list(raw_df |> dplyr::mutate(block = !!as.numeric(block))),
paste0("block_", as.character(block))
)
list_out$events <- setNames(
list(x$msg |> dplyr::mutate(block = !!as.numeric(block))),
paste0("block_", as.character(block))
)
list_out$blinks <- setNames(
list(x$blinks |> dplyr::mutate(block = !!as.numeric(block))),
paste0("block_", as.character(block))
)
} else {
cli::cli_abort("[EXIT] `block` must be either: NULL, numeric, or 'auto'.")
}
} else {
# fallback to direct assignment if all block cases fail
list_out$timeseries <- list("block_1" = raw_df)
# omit the block column from the timeseries, events, and blinks
list_out$timeseries$block_1 <- list_out$timeseries$block_1 |>
dplyr::select(-block)
list_out$events <- x$msg |> dplyr::select(-block)
list_out$blinks <- x$blinks |> dplyr::select(-block)
}
# add unique event identifiers to handle duplicate event messages
list_out$events <- add_unique_event_identifiers(list_out$events)
# fix metadata (info) for newer versions of eyelink
fixed_info <- parse_eyelink_info(x$info$version, x$info$model)
x$info$version <- fixed_info$version
x$info$model <- fixed_info$model
list_out$file <- file
list_out$info <- x$info
list_out$binocular <- binoc
list_out$binocular_mode <- binoc_mode
# set latest pointer based on block structure
if (
is.list(list_out$timeseries) &&
!is.data.frame(list_out$timeseries)
) {
# multiblock: set a named list of pointers
list_out$latest <- setNames(
as.list(rep("pupil_raw", length(list_out$timeseries))),
names(list_out$timeseries)
)
} else {
# single block: set a single pointer
list_out$latest <- "pupil_raw"
}
list_out$decimated.sample.rate <- NA_integer_
list_out <- normalize_time_orig(list_out)
class(list_out) <- "eyeris"
list_out
}
#' Add unique event identifiers to handle duplicate event messages
#'
#' This function adds a new column `text_unique` to each events table that
#' creates unique identifiers for each occurrence of the same event message
#' by appending a count number. This prevents events like "GOAL" from being
#' merged across all separate goals.
#'
#' This function is called by the exposed wrapper [eyeris::load_asc()]
#'
#' @param events_list A list of event data frames (one per block)
#'
#' @return Updated events list with `text_unique` column added to each
#' data frame
#'
#' @keywords internal
add_unique_event_identifiers <- function(events_list) {
if (is.data.frame(events_list)) {
# single data frame case
events_list <- add_unique_identifiers_to_df(events_list)
} else if (is.list(events_list)) {
# list of data frames case (multiple blocks)
events_list <- lapply(events_list, add_unique_identifiers_to_df)
}
events_list
}
#' Add unique identifiers to a single events data frame
#'
#' This function is called by the exposed wrapper [eyeris::load_asc()]
#'
#' @param events_df A single events data frame
#'
#' @return Updated events data frame with `text_unique` column
#'
#' @keywords internal
add_unique_identifiers_to_df <- function(events_df) {
if (!"text" %in% colnames(events_df)) {
return(events_df)
}
# create a counter for each unique text message
events_df <- events_df |>
dplyr::group_by(text) |>
dplyr::mutate(
text_unique = if (dplyr::n() > 1) {
paste0(text, "_", dplyr::row_number())
} else {
text
}
) |>
dplyr::ungroup()
events_df
}
# normalize "time_orig" to seconds and to start at 0
any_block_entries <- function(eyeris_obj) {
is.list(eyeris_obj$timeseries) &&
any(grepl("^block_", names(eyeris_obj$timeseries)), na.rm = TRUE)
}
normalize_time_orig <- function(eyeris_obj) {
if (any_block_entries(eyeris_obj)) {
# case: one or more multiple "blocks"
eyeris_obj$timeseries <-
lapply(eyeris_obj$timeseries, function(block_df) {
block_df |>
dplyr::mutate(
time_secs = (time_orig - dplyr::first(time_orig)) / 1000,
time_scaled = (time_orig - dplyr::first(time_orig)) / 1000,
.after = "time_orig"
)
})
} else {
# safety mechanism: shouldn't ever get to this condition b/c of 167
# case: no tibble "block_{}" in list timeseries; ts is the tibble
eyeris_obj$timeseries <- eyeris_obj$timeseries |>
dplyr::mutate(
time_secs = (time_orig - dplyr::first(time_orig)) / 1000,
time_scaled = (time_orig - dplyr::first(time_orig)) / 1000,
.after = "time_orig"
)
}
eyeris_obj
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.