R/builtin-DEoptim.R

Defines functions deoptimPlot deoptimSummary DEoptim

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA


################################################################################
# FUNCTION:            DESCRIPTION:
#  .DEoptim             Differential evolution optimization solver
#  .deoptimSummary      Summary function
#  .deoptimPlot         Plot function
################################################################################


# Rmetrics:
#   Note that tawny is not available on Debian as of 2009-04-28. 
#   To run these functions under Debian/Rmetrics we have them    
#   implemented here as a builtin.
#   We also made modifications for tailored usage with Rmetrics. 


# Package: DEoptim
# Version: 1.3-0
# Date: 2008-12-03
# Title: Differential Evolution Optimization
# Author: David Ardia <[email protected]>
# Maintainer: David Ardia <[email protected]>
# Depends: R (>= 2.2.0)
# Description: This package provides the DEoptim function which performs
#   Differential Evolution Optimization (evolutionary algorithm).
# License: GPL version 2 or newer
# URL: http://perso.unifr.ch/david.ardia


# ------------------------------------------------------------------------------


.DEoptim <- 
function(FUN, lower, upper, control = list(), trace = TRUE, ...) 
{  
    # Differential Evolution Optimization
    # David Ardia, 2008-12-03

    # DW: trace added
    # DW: round replaced by signif
    
    if (missing(FUN))
    stop("'FUN' is missing") 
    FUN <- match.fun(FUN)
    
    if (missing(lower) || missing(upper))
      stop("'lower' or 'upper' is missing")
    if (length(lower) != length(upper))
      stop("'lower' and 'upper' are not of same length")
    if (!is.vector(lower))
      lower <- as.vector(lower)
    if (!is.vector(upper))
      upper <- as.vector(upper)
    if (any(lower > upper))
      stop("'lower' > 'upper'")
    if (any(lower == "Inf"))
      warning("you set a component of 'lower' to 'Inf'. May imply 'NaN' results")
    if (any(lower == "-Inf"))
      warning("you set a component of 'lower' to '-Inf'. May imply 'NaN' results")
    if (any(upper == "Inf"))
      warning("you set a component of 'upper' to 'Inf'. May imply 'NaN' results")
    if (any(upper == "-Inf"))
      warning("you set a component of 'upper' to '-Inf'. May imply 'NaN' results")
    
    ## Sub-functions
    fn.zeros <- function(nr, nc)
      matrix(rep.int(0, nr * nc), nrow = nr)
    
    fn.checkBoundaries <- function(x, lower, upper) {
      r <- apply(rbind(lower, x), 2, max)
      apply(rbind(upper, r), 2, min) 
    }
    
    d <- length(lower)
    con <- list(VTR = -Inf, itermax = 200,
                initial = NULL,
                storepopfrom = NULL, storepopfreq = 1,
                NP = 50, F = 0.8, CR = 0.5, strategy = 2,
                refresh = 10, digits = 4)
    con[names(control)] <- control
    
    if (con$itermax <= 0) {
      warning("'itermax' <= 0; set to default value 200\n", immediate. = TRUE)
      con$itermax <- 200
    }
    if (con$NP < 1) {
      warning("'NP' < 1; set to default value 50\n", immediate. = TRUE)
      con$NP <- 50
    }
    NP <- con$NP
    if (con$F < 0 | con$F > 2) {
      warning("'F' not in [0,2]; set to default value 0.8\n", immediate. = TRUE)
      con$F <- 0.8
    }
    if (con$CR < 0 | con$CR > 1) {
      warning("'CR' not in [0,1]; set to default value 0.5\n", immediate. = TRUE)
      con$CR <- 0.5
    }
    if (con$strategy < 1 | con$strategy > 5) {
      warning("'strategy' not in {1,...,5}; set to default value 2\n", immediate. = TRUE)
      con$strategy <- 2
    }
    con$refresh <- floor(con$refresh)
    if (con$refresh > con$itermax)
      con$refresh <- 1
    
    if (is.null(con$initial)) {
      ## Initialize population and some arrays
      pop <- matrix(rep.int(lower, NP), nrow = NP, byrow = TRUE) +
        matrix(runif(NP * d), nrow = NP) *
          matrix(rep.int(upper - lower, NP), nrow = NP, byrow = TRUE)
    }
    else{
      warning("'initial' population is set by the user\n", immediate. = TRUE)
      if (!is.matrix(con$initial)){
        warning("'initial' must be a matrix; set it to a matrix\n", immediate. = TRUE)
        pop <- matrix(con$initial, nrow = NP, ncol = d)
      }
      else{
        warning("'NP' determined by the number of rows of the 'initial' population\n", immediate = TRUE)
        NP <- nrow(con$initial)
        pop <- con$initial
        if (d != ncol(pop))
          warning ("modify the length of 'lower' and 'upper' to match the dimension of 'initial'\n", immediate = TRUE)
      }
    }
    
    if (is.null(con$storepopfrom)) {
      con$storepopfrom <- con$itermax+1
    }
    
    con$storepopfreq <- floor(con$storepopfreq)
    if (con$storepopfreq > con$itermax)
      con$storepopfreq <- 1
    storepopiter <- 1
    storepop <- list()
    
    ## initialization
    popold <- fn.zeros(NP,d) ## toggle population
    val <- rep.int(0,NP) ## create and reset the "cost array"
    bestmem <- bestmemit <- rep.int(0,d) ## best population member ever and iteration
    
    ## Evaluate the best member after initialization
    nfeval <- NP ## number of function evaluations
    val <- apply(pop, 1, FUN, ...)
    if (any(is.nan(val)))
      stop ("your function returns 'NaN'; modify it or change 'lower' or 'upper' boundaries")
    if (any(is.na(val)))
      stop ("your function returns 'NA'; modify it or change 'lower' or 'upper' boundaries")
        
    bestval <- bestvalit <- min(val)
    ibest <- match(bestvalit, val)
    bestmem <- pop[ibest,]
    bestmemit <- matrix(bestmem, nrow = 1)  
    
    ## DE - optimization
    ##
    ## popold is the population which has to compete. It is
    ## static through one iteration. pop is the newly emerging population.
    pm1 <- pm2 <- pm3 <- pm4 <- pm5 <- fn.zeros(NP,d) ## initialize population matrix 1 - 5
    bm <- ui <- mui <- mpo <- fn.zeros(NP,d)
    rot <- seq(from = 0, by = 1, to = (NP-1))## rotating index array (size NP)
    rotd <- seq(from = 0, by = 1, to = (d-1)) ## rotating index array (size d)
    rt <- fn.zeros(NP,NP) ## another rotating index array
    rtd <- fn.zeros(d,d) ## rotating index array for exponential crossover
    a1 <- a2 <- a3 <- a4 <- a5 <- fn.zeros(NP,NP) ## index array 1 - 5
    ind <- fn.zeros(4,4)
    
    iter <- 1
    while (iter <= con$itermax & bestval >= con$VTR){
      popold <- pop ## save old population
      
      ind <- sample(1:4) ## index pointer array
    
      a1 <- sample(1:NP) ## shuffle locations and rotate vectors
      rt <- (rot + ind[1]) %% NP 
      a2 <- a1[rt + 1] 
      rt <- (rot + ind[2]) %% NP 
      a3 <- a2[rt + 1]
      rt <- (rot + ind[3]) %% NP
      a4 <- a3[rt + 1]     
      rt <- (rot + ind[4]) %% NP
      a5 <- a4[rt + 1]
        
      pm1 <- popold[a1,] ## shuffled populations 1 - 5
      pm2 <- popold[a2,]
      pm3 <- popold[a3,] 
      pm4 <- popold[a4,] 
      pm5 <- popold[a5,]
      
      bm <- matrix(rep.int(bestmemit[iter,], NP), nrow = NP, byrow = TRUE) ## population filled with
      ## the best member of the last iteration
        
      mui <- matrix(runif(NP * d), nrow = NP) < con$CR ## all random numbers < CR are 1, 0 otherwise
      mpo <- mui < 0.5 
        
      if (con$strategy == 1) { ## best / 1
        ui <- bm + con$F * (pm1 - pm2) ## differential variation
        ui <- popold * mpo + ui * mui ## crossover
      }
      else if (con$strategy == 2) { ## rand / 1
        ui <- pm3 + con$F * (pm1 - pm2) ## differential variation
        ui <- popold * mpo + ui * mui ## crossover
      }
      else if (con$strategy == 3) { ## rand-to-best / 1
        ui <- popold + con$F * (bm - popold) + con$F * (pm1 - pm2) ## differential variation
        ui <- popold * mpo + ui * mui ## crossover
      }
      else if (con$strategy == 4) { ## best / 2
        ui <- bm + con$F * (pm1 - pm2 + pm3 - pm4) ## differential variation
        ui <- popold * mpo + ui * mui ## crossover
      }
      else { ## rand / 2                
        ui <- pm5 + con$F * (pm1 - pm2 + pm3 - pm4) ## differential variation
        ui <- popold * mpo + ui * mui ## crossover
      }
    
      for (i in 1:NP)
        ui[i,] <- fn.checkBoundaries(ui[i,], lower, upper) ## check whether
      ## the components are within the boundaries
    
      nfeval <- nfeval + NP
      tempval <- apply(ui, 1, FUN, ...) ## check cost of competitor
      if (any(is.nan(tempval)))
        stop ("'your function returns 'NaN'; modify it or change 'lower' or 'upper' boundaries")
      if (any(is.na(tempval)))
        stop ("your function returns 'NA'; modify it or change 'lower' or 'upper' boundaries")
      ichange <- tempval <= val
      val[ichange] <- tempval[ichange]
      pop[ichange,] <- ui[ichange,]
      bestval <- min(val)
      bestvalit <- c(bestvalit, bestval)
      ibest <- match(bestval, val)
      bestmem <- pop[ibest,]
      bestmemit <- rbind(bestmemit, bestmem)
    
      ## keeppop
      if (iter >= con$storepopfrom & iter %% con$storepopfreq == 0){
        storepop[[storepopiter]] <- pop
        storepopiter <- storepopiter + 1
      }
    
      ## refresh output
      if (con$refresh > 0 & iter %% con$refresh == 0) {      
        if (trace) cat("iteration: ", iter,
            "best member: " , signif(bestmem, con$digits),
            "best value: ", signif(bestval, con$digits), "\n")
      }
      iter <- iter + 1
      
    }
    
    if (!is.null(names(lower)))
      nam <- names(lower)
    else if (!is.null(names(upper)) & is.null(names(lower)))
      nam <- names(upper)
    else
      nam <- paste("par", 1:length(lower), sep = "")
    
    names(lower) <- names(upper) <- names(bestmem) <- nam
    dimnames(bestmemit) <- list(1:iter, nam)
    r <- list(optim = list(
                bestmem = bestmem,
                bestval = bestval,
                nfeval = nfeval,
                iter = iter-1),
              member = list(
                lower = lower,
                upper = upper,
                bestvalit = bestvalit,
                bestmemit = bestmemit,
                pop = pop,
                storepop = storepop))
    
    attr(r, "class") <- "DEoptim"
    return(r)
}


# ------------------------------------------------------------------------------


.deoptimSummary <- 
function(object, ...)
{
    digits <- max(5, getOption('digits') - 2)
    z <- object$optim
    
    cat("\n***** summary of DEoptim object *****",
        "\nbest member   : ", round(z$bestmem, digits),
        "\nbest value    : ", round(z$bestval, digits),
        "\nafter         : ", round(z$iter), "iterations",
        "\nFUN evaluated : ", round(z$nfeval), "times",
        "\n*************************************\n")
    
    invisible(z)
}


# ------------------------------------------------------------------------------


.deoptimPlot <- 
function(x, plot.type = c("bestmemit","bestvalit"), ...)
{
    z <- x$member
    n <- length(z$bestvalit)
    plot.type <- plot.type[1]
    if (plot.type == "bestmemit"){
      npar <- length(z$lower)
      nam <- names(z$lower)
      if (npar == 1){
        plot(1:n, z$bestmemit,
             xlab = "iteration", ylab = "value", main = nam, ...)
        abline(h = c(z$lower, z$upper), col = 'red')
      }
      else if (npar == 2){
        plot(z$bestmemit[,1], z$bestmemit[,2],
             xlab = nam[1], ylab = nam[2], ...)
        abline(h = c(z$lower[1], z$upper[1]), col = 'red')
        abline(v = c(z$lower[2], z$upper[2]), col = 'red')
      }
      else{
        par(mfrow = c(npar,1))
        for (i in 1:npar){
          plot(1:n, z$bestmemit[,i],
               xlab = "iteration", ylab = "value", main = nam[i], ...)
          abline(h = c(z$lower[i], z$upper[i]), col = 'red')
        }
      }
    }
    else
      plot(1:n, z$bestvalit,
           xlab = "iteration", ylab = "function value",
           main = "convergence plot", ...)
}   


################################################################################

Try the fAssets package in your browser

Any scripts or data that you put into this service are public.

fAssets documentation built on Nov. 17, 2017, 4:22 a.m.