R/fastLink.R

Defines functions fastLink

Documented in fastLink

#' fastLink
#'
#' Run the fastLink algorithm to probabilistically match
#' two datasets.
#'
#' @usage fastLink(dfA, dfB, varnames, stringdist.match,
#' stringdist.method, numeric.match, partial.match,
#' cut.a, cut.p, jw.weight,
#' cut.a.num, cut.p.num,
#' priors.obj, w.lambda, w.pi,
#' address.field, gender.field, estimate.only, em.obj,
#' dedupe.matches, linprog.dedupe,
#' reweight.names, firstname.field, cond.indep,
#' n.cores, tol.em, threshold.match, return.all, return.df, verbose)
#'
#' @param dfA Dataset A - to be matched to Dataset B
#' @param dfB Dataset B - to be matched to Dataset A
#' @param varnames A vector of variable names to use for matching.
#' Must be present in both dfA and dfB
#' @param stringdist.match A vector of variable names indicating
#' which variables should use string distance matching. Must be a subset of
#' 'varnames' and must not be present in 'numeric.match'.
#' @param stringdist.method String distance method for calculating similarity, options are: "jw" Jaro-Winkler (Default), "dl" Damerau-Levenshtein, "jaro" Jaro, and "lv" Edit
#' @param numeric.match A vector of variable names indicating which variables should use numeric matching.
#' Must be a subset of 'varnames' and must not be present in 'stringdist.match'.
#' @param partial.match A vector of variable names indicating whether to include
#' a partial matching category for the string distances. Must be a subset of 'varnames'
#' and 'stringdist.match'.
#' @param cut.a Lower bound for full string-distance match, ranging between 0 and 1. Default is 0.94
#' @param cut.p Lower bound for partial string-distance match, ranging between 0 and 1. Default is 0.88
#' @param jw.weight Parameter that describes the importance of the first characters of a string (only needed if stringdist.method = "jw"). Default is .10
#' @param cut.a.num Lower bound for full numeric match. Default is 1
#' @param cut.p.num Lower bound for partial numeric match. Default is 2.5
#' @param priors.obj A list containing priors for auxiliary movers information,
#' as output from calcMoversPriors(). Default is NULL
#' @param w.lambda How much weight to give the prior on lambda versus the data. Must range between 0 (no weight on prior) and 1 (weight fully on prior).
#' Default is NULL (no prior information provided).
#' @param w.pi How much weight to give the prior on pi versus the data. Must range between 0 (no weight on prior) and 1 (weight fully on prior).
#' Default is NULL (no prior information provided).
#' @param address.field The name of the address field. To be used when 'pi.prior' is included in 'priors.obj'.
#' Default is NULL (no matching variables should have address prior applied). Must be present in 'varnames'.
#' @param gender.field The name of the field indicating gender. If provided, the exact-matching gender prior is used in the EM algorithm.
#' Default is NULL (do not implement exact matching on gender). Must be present in 'varnames'.
#' @param estimate.only Whether to stop running the algorithm after the EM step (omitting getting the matched indices of dataset A and dataset B).
#' Only the EM object will be returned. Can be used when running the match on a random sample and applying to a larger dataset, or for out-of-sample
#' prediction of matches. Default is FALSE.
#' @param em.obj An EM object from a prior run of 'fastLink' or 'emlinkMARmov'. Parameter estimates will be applied to the matching patterns
#' in 'dfA' and 'dfB'. If provided. 'estimate.only' is set to FALSE. Often provided when parameters have been
#' estimated on a smaller sample, and the user wants to apply them to the full dataset. Default is NULL (EM will be estimated from matching patterns in 'dfA' and 'dfB').
#' @param dedupe.matches Whether to dedupe the set of matches returned by the algorithm. Default is TRUE.
#' @param linprog.dedupe If deduping matches, whether to use Winkler's linear programming solution to dedupe. Default is FALSE.
#' @param reweight.names Whether to reweight the posterior match probabilities by the frequency of individual first names. Default is FALSE.
#' @param firstname.field The name of the field indicating first name. Must be provided if reweight.names = TRUE.
#' @param cond.indep Estimates for the parameters of interest are obtained from the Fellegi-Sunter model under conditional independence. Default is TRUE. 
#' If set to FALSE parameters estimates are obtained from a model that allows for dependencies across linkage fields.
#' @param n.cores Number of cores to parallelize over. Default is NULL.
#' @param tol.em Convergence tolerance for the EM Algorithm. Default is 1e-04.
#' @param threshold.match A number between 0 and 1 indicating either the lower bound (if only one number provided) or the range of certainty that the
#' user wants to declare a match. For instance, threshold.match = .85 will return all pairs with posterior probability greater than .85 as matches,
#' while threshold.match = c(.85, .95) will return all pairs with posterior probability between .85 and .95 as matches.
#' @param return.all Whether to return the most likely match for each observation in dfA and dfB. Overrides user setting of \code{threshold.match} by setting
#' \code{threshold.match} to 0.0001, and automatically dedupes all matches. Default is FALSE.
#' @param return.df Whether to return the entire dataframe of dfA and dfB instead of just the indices. Default is FALSE.
#' @param verbose Whether to print elapsed time for each step. Default is FALSE.
#'
#' @return \code{fastLink} returns a list of class 'fastLink' containing the following components if calculating matches:
#' \item{matches}{An nmatches X 2 matrix containing the indices of the successful matches in \code{dfA}
#' in the first column, and the indices of the corresponding successful matches in \code{dfB} in the
#' second column.}
#' \item{EM}{A list with the output of the EM algorithm, which contains the exact matching
#' patterns and the associated posterior probabilities of a match for each matching pattern.}
#' \item{patterns}{A matrix with the observed matching patterns for each successfully matched pair.}
#' \item{nobs.a}{The number of observations in dataset A.}
#' \item{nobs.b}{The number of observations in dataset B.}
#' \item{zeta.name}{If reweighting by name, the posterior probability of a match for each match in dataset A and B.}
#' 
#' If only running the EM and not returning the matched indices, \code{fastLink} only returns the EM object.
#'
#' @author Ted Enamorado <ted.enamorado@gmail.com>, Ben Fifield <benfifield@gmail.com>, and Kosuke Imai
#'
#' @examples
#' \dontrun{
#' fl.out <- fastLink(dfA, dfB,
#' varnames = c("firstname", "lastname", "streetname", "birthyear"),
#' n.cores = 1)
#' }
#' @export
fastLink <- function(dfA, dfB, varnames,
                     stringdist.match = NULL, 
                     stringdist.method = "jw",
                     numeric.match = NULL, 
                     partial.match = NULL,
                     cut.a = 0.94, cut.p = 0.88,
                     jw.weight = .10,
                     cut.a.num = 1, cut.p.num = 2.5,
                     priors.obj = NULL,
                     w.lambda = NULL, w.pi = NULL, address.field = NULL,
                     gender.field = NULL, estimate.only = FALSE, em.obj = NULL,
                     dedupe.matches = TRUE, linprog.dedupe = FALSE,
                     reweight.names = FALSE, firstname.field = NULL, cond.indep = TRUE,
                     n.cores = NULL, tol.em = 1e-04, threshold.match = 0.85,
                     return.all = FALSE, return.df = FALSE, verbose = FALSE){

    cat("\n")
    cat(c(paste(rep("=", 20), sep = "", collapse = ""), "\n"))
    cat("fastLink(): Fast Probabilistic Record Linkage\n")
    cat(c(paste(rep("=", 20), sep = "", collapse = ""), "\n\n"))

    ## --------------------------------------
    ## Process inputs and stop if not correct
    ## --------------------------------------
    if(any(class(dfA) %in% c("tbl_df", "data.table"))){
        dfA <- as.data.frame(dfA)
    }
    if(any(class(dfB) %in% c("tbl_df", "data.table"))){
        dfB <- as.data.frame(dfB)
    }
    if(any(!(varnames %in% names(dfA)))){
        stop("Some variables in varnames are not present in dfA.")
    }
    if(any(!(varnames %in% names(dfB)))){
        stop("Some variables in varnames are not present in dfB.")
    }
    if(any(!(stringdist.match %in% varnames))){
        stop("You have provided a variable name for stringdist.match that is not in 'varnames'.")
    }
    if(any(!(numeric.match %in% varnames))){
        stop("You have provided a variable name for numeric.match that is not in 'varnames'.")
    }
    if(length(intersect(numeric.match, stringdist.match)) > 0){
        stop("There is a variable present in both 'numeric.match' and 'stringdist.match'. Please select only one matching metric for each variable.")
    }
    if(is.null(numeric.match)) {
      if (any(!(partial.match %in% varnames)) | any(!(partial.match %in% 
                                                      stringdist.match))) {
        stop("You have provided a variable name for 'partial.match' that is not present in either 'varnames', 'numeric.match', or 'stringdist.match'.")
      }
    } else {
      if (any(!(partial.match %in% varnames)) | any(!(partial.match %in% unique(c(stringdist.match, numeric.match))))) {
        stop("You have provided a variable name for 'partial.match' that is not present in either 'varnames', 'numeric.match', or 'stringdist.match'.")
      }
    }    
    if(!is.null(address.field)){
        if(length(address.field) > 1 | length(gender.field) > 1){
            stop("'address.field' must have at most only one variable name.")
        }
        if(!(address.field %in% varnames)){
            stop("You have provided a variable name for 'address.field' that is not in 'varnames'.")
        }
    }
    if(!is.null(gender.field)){
        if(length(gender.field) > 1){
            stop("'gender.field' must have at most one variable name.")
        }
        if(!(gender.field %in% varnames)){
            stop("You have provided a variable name for 'gender.field' that is not in 'varnames'.")
        }
    }
    if(reweight.names == TRUE & is.null(firstname.field)){
        stop("If reweighting the match probability by first name, you must provide the name of the field representing first name.")
    }
    if(!is.null(firstname.field)){
        if(length(firstname.field) > 1){
            stop("'firstname.field' must have at most one variable name.")
        }
        if(!(firstname.field %in% varnames)){
            stop("You have provided a variable name for 'firstname.field' that is not in 'varnames'.")
        }
    }
    if(!is.null(em.obj)){
        if(!("fastLink.EM" %in% class(em.obj))){
            stop("If providing an EM object, it must be of class 'fastLink.EM'.")
        }
    }
    if(!is.null(em.obj) & estimate.only){
        estimate.only <- FALSE
        cat("You have provided an EM object but have set 'estimate.only' to TRUE. Setting 'estimate.only' to FALSE so that matched indices are returned.\n")
    }
    if(!(stringdist.method %in% c("jw", "jaro", "lv", "dl"))){
        stop("Invalid string distance method. Method should be one of 'jw', 'dl', 'jaro', or 'lv'.")
    }
    if(stringdist.method == "jw" & !is.null(jw.weight)){
        if(jw.weight < 0 | jw.weight > 0.25){
            stop("Invalid value provided for jw.weight. Remember, jw.weight in [0, 0.25].")
        }
    }
    if(return.all){
        threshold.match <- 0.001
        if(!dedupe.matches){
            cat("You have specified that all matches be returned but are not deduping the matches. The resulting object may be very large.\n")
        }
    }else{
        cat("If you set return.all to FALSE, you will not be able to calculate a confusion table as a summary statistic.\n")
    }
    if(!is.null(priors.obj) & cond.indep == FALSE){
        cat("The current implementation of fastLink can only incorporate prior information under the conditionally independent model. Ignoring prior information in estimation.")
        priors.obj <- NULL
        w.lambda <- NULL
        w.pi <- NULL
        address.field <- NULL
        gender.field <- NULL
    }

    ## Check class of numeric indicators
    classA <- lapply(dfA[,varnames], class)
    classB <- lapply(dfB[,varnames], class)
    if(any(unlist(classA)[names(classA) %in% numeric.match] != "numeric") |
       any(unlist(classB)[names(classB) %in% numeric.match] != "numeric")){
        stop("You have specified that a variable be compared using numeric matching, but that variable is not of class 'numeric'. Please check your variable classes.")
    }

    ## Check if data frames are identical
    dedupe.df <- FALSE
    if(identical(dfA, dfB)){
        cat("dfA and dfB are identical, assuming deduplication of a single data set.\nSetting return.all to FALSE.\n\n")
        dedupe.matches <- FALSE
        return.all <- FALSE
        dedupe.df <- TRUE
    }

    ## Create boolean indicators
    sm.bool <- which(varnames %in% stringdist.match)
    stringdist.match <- rep(FALSE, length(varnames))
    if(length(sm.bool) > 0){
        stringdist.match[sm.bool] <- TRUE
    }

    nm.bool <- which(varnames %in% numeric.match)
    numeric.match <- rep(FALSE, length(varnames))
    if(length(nm.bool) > 0){
        numeric.match[nm.bool] <- TRUE
    }

    pm.bool <- which(varnames %in% partial.match)
    partial.match <- rep(FALSE, length(varnames))
    if(length(pm.bool) > 0){
        partial.match[pm.bool] <- TRUE
    }

    af.bool <- which(varnames %in% address.field)
    address.field <- rep(FALSE, length(varnames))
    if(length(af.bool) > 0){
        address.field[af.bool] <- TRUE
    }

    gf.bool <- which(varnames %in% gender.field)
    gender.field <- rep(FALSE, length(varnames))
    if(length(gf.bool) > 0){
        gender.field[gf.bool] <- TRUE
    }

    fn.bool <- which(varnames %in% firstname.field)
    firstname.field <- rep(FALSE, length(varnames))
    if(length(fn.bool) > 0){
        firstname.field[fn.bool] <- TRUE
    }

    ## ----------------------------
    ## Calculate agreement patterns
    ## ----------------------------
    cat("Calculating matches for each variable.\n")
    start <- Sys.time()
    gammalist <- vector(mode = "list", length = length(varnames))
    for(i in 1:length(gammalist)){
        if(verbose){
            matchtype <- ifelse(stringdist.match[i], "string-distance", ifelse(numeric.match[i], "numeric", "exact"))
            cat("    Matching variable", varnames[i], "using", matchtype, "matching.\n")
        }
        ## Convert to character
        if(is.factor(dfA[,varnames[i]]) | is.factor(dfB[,varnames[i]])){
            dfA[,varnames[i]] <- as.character(dfA[,varnames[i]])
            dfB[,varnames[i]] <- as.character(dfB[,varnames[i]])
        }
        ## Warn if no variation (except for gender blocking)
        if(!gender.field[i]){
            if(sum(is.na(dfA[,varnames[i]])) == nrow(dfA) | length(unique(dfA[,varnames[i]])) == 1){
                cat(paste("WARNING: You have no variation in dataset A for", varnames[i], "or all observations are missing."))
            }
            if(sum(is.na(dfB[,varnames[i]])) == nrow(dfB) | length(unique(dfB[,varnames[i]])) == 1){
                cat(paste("WARNING: You have no variation in dataset B for", varnames[i], "or all observations are missing."))
            }
        }
        if(sum(dfA[,varnames[i]] %in% dfB[,varnames[i]]) == 0){
            cat(paste0("WARNING: You have no exact matches for ", varnames[i], "."))
        }
        ## Get patterns
        if(stringdist.match[i]){
            if(partial.match[i]){
                gammalist[[i]] <- gammaCKpar(
                    dfA[,varnames[i]], dfB[,varnames[i]], cut.a = cut.a, cut.p = cut.p, method = stringdist.method, w = jw.weight, n.cores = n.cores
                )
            }else{
                gammalist[[i]] <- gammaCK2par(dfA[,varnames[i]], dfB[,varnames[i]], cut.a = cut.a, method = stringdist.method, w = jw.weight, n.cores = n.cores)
            }
        }else if(numeric.match[i]){
            if(partial.match[i]){
                gammalist[[i]] <- gammaNUMCKpar(
                    dfA[,varnames[i]], dfB[,varnames[i]], cut.a = cut.a.num, cut.p = cut.p.num, n.cores = n.cores
                )
            }else{
                gammalist[[i]] <- gammaNUMCK2par(
                    dfA[,varnames[i]], dfB[,varnames[i]], cut.a = cut.a.num, n.cores = n.cores
                )
            }
        }else{
            gammalist[[i]] <- gammaKpar(dfA[,varnames[i]], dfB[,varnames[i]], gender = gender.field[i], n.cores = n.cores)
        }
    }
    end <- Sys.time()
    if(verbose){
        cat("Calculating matches for each variable took", round(difftime(end, start, units = "mins"), 2), "minutes.\n\n")
    }

    ## Get row numbers
    nr_a <- nrow(dfA)
    nr_b <- nrow(dfB)

    ## ------------------------------
    ## Get counts for zeta parameters
    ## ------------------------------
    cat("Getting counts for parameter estimation.\n")
    start <- Sys.time()
    counts <- tableCounts(gammalist, nobs.a = nr_a, nobs.b = nr_b, n.cores = n.cores)
    end <- Sys.time()
    if(verbose){
        cat("Getting counts for parameter estimation took", round(difftime(end, start, units = "mins"), 2), "minutes.\n\n")
    }

    ## ------------------------------
    ## Run or impute the EM algorithm
    ## ------------------------------
    if(is.null(em.obj)){
        ## Run EM algorithm
        cat("Running the EM algorithm.\n")
        start <- Sys.time()
        if(is.null(priors.obj)){
            lambda.prior <- NULL
            pi.prior <- NULL
        }else{
            if("lambda.prior" %in% names(priors.obj)){
                lambda.prior <- priors.obj$lambda.prior
            }
            if("pi.prior" %in% names(priors.obj)){
                if(!("lambda.prior" %in% names(priors.obj))){
                    stop("Must specify a prior for lambda if providing a prior for pi.")
                }
                pi.prior <- priors.obj$pi.prior
            }else{
                pi.prior <- NULL
            }
        }
        if(cond.indep == FALSE){
            resultsEM <- emlinklog(patterns = counts, nobs.a = nr_a, nobs.b = nr_b,
                                   tol = tol.em, varnames = varnames)  
        }else{
            resultsEM <- emlinkMARmov(patterns = counts, nobs.a = nr_a, nobs.b = nr_b,
                                      tol = tol.em,
                                      prior.lambda = lambda.prior, w.lambda = w.lambda,
                                      prior.pi = pi.prior, w.pi = w.pi,
                                      address.field = address.field, 
                                      gender.field = gender.field,
                                      varnames = varnames)
        }
        end <- Sys.time()
        if(verbose){
            cat("Running the EM algorithm took", round(difftime(end, start, units = "secs"), 2), "seconds.\n\n")
        }
    }else{
        cat("Imputing matching probabilities using provided EM object.\n")
        resultsEM <- emlinkRS(counts, em.obj, nr_a, nr_b)
    }

    if(max(resultsEM$zeta.j) < threshold.match) {
        warning(paste0("No matches found for the threshold value used. We recommend trying a lower threshold.match value. Note that you currently have threshold.match set to ", threshold.match, "."))
    }

    ## -----------------------------------------------
    ## Get the estimated matches, dedupe, and reweight
    ## -----------------------------------------------
    if(!estimate.only){
        
        ## Get matches
        cat("Getting the indices of estimated matches.\n")
        start <- Sys.time()
        matches <- matchesLink(gammalist, nobs.a = nr_a, nobs.b = nr_b,
                               em = resultsEM, thresh = threshold.match,
                               n.cores = n.cores)
        end <- Sys.time()
        if(verbose){
            cat("Getting the indices of estimated matches took", round(difftime(end, start, units = "mins"), 2), "minutes.\n\n")
        }

        ## Get the patterns
        patterns <- getPatterns(matchesA = dfA[matches$inds.a, ], matchesB = dfB[matches$inds.b, ],
                                varnames = varnames, stringdist.match = stringdist.match,
                                numeric.match = numeric.match, partial.match = partial.match,
                                stringdist.method = stringdist.method,
                                cut.a = cut.a, cut.p = cut.p, jw.weight = jw.weight,
                                cut.a.num = cut.a.num, cut.p.num = cut.p.num)
        
        ## Run deduplication
        if(dedupe.matches & length(matches$inds.a) > 0){
            cat("Deduping the estimated matches.\n")
            start <- Sys.time()
            ddm.out <- dedupeMatches(matchesA = dfA[matches$inds.a,], matchesB = dfB[matches$inds.b,],
                                     EM = resultsEM, matchesLink = matches, patterns = patterns,
                                     linprog = linprog.dedupe)
            matches <- ddm.out$matchesLink
            resultsEM <- ddm.out$EM
            end <- Sys.time()
            if(verbose){
                cat("Deduping the estimated matches took", round(difftime(end, start, units = "mins"), 2), "minutes.\n\n")
            }
        }else if(length(matches$inds.a) > 0){
            cat("Calculating the posterior for each pair of matched observations.\n")
            start <- Sys.time()
            zeta <- getPosterior(dfA[matches$inds.a,], dfB[matches$inds.b,], EM = resultsEM,
                                 patterns = patterns)
            end <- Sys.time()
            if(verbose){
                cat("Calculating the posterior for each matched pair took", round(difftime(end, start, units = "mins"), 2), "minutes.\n\n")
            }
        }

        ## Get the patterns
        cat("Getting the match patterns for each estimated match.\n")
        start <- Sys.time()
        patterns <- getPatterns(matchesA = dfA[matches$inds.a, ], matchesB = dfB[matches$inds.b, ],
                                varnames = varnames, stringdist.match = stringdist.match,
                                numeric.match = numeric.match, partial.match = partial.match,
                                stringdist.method = stringdist.method,
                                cut.a = cut.a, cut.p = cut.p, jw.weight = jw.weight,
                                cut.a.num = cut.a.num, cut.p.num = cut.p.num)
        end <- Sys.time()
        if(verbose){
            cat("Getting the match patterns for each estimated match took", round(difftime(end, start, units = "mins"), 2), "minutes.\n\n")
        }

        ## Reweight first names or get zeta
        if(reweight.names & length(matches$inds.a) > 0){
            cat("Reweighting match probabilities by frequency of occurrence.\n")
            start <- Sys.time()
            rwn.out <- nameReweight(dfA, dfB, EM = resultsEM, gammalist = gammalist, matchesLink = matches,
                                    varnames = varnames, firstname.field = firstname.field,
                                    patterns = patterns, threshold.match = threshold.match, n.cores = n.cores)
            end <- Sys.time()
            if(verbose){
                cat("Reweighting by first name took", round(difftime(end, start, units = "mins"), 2), "minutes.\n\n")
            }
        }

        ## Return object
        out <- list()
        if(return.df){
            out[["dfA.match"]] <- dfA[matches$inds.a,]
            out[["dfB.match"]] <- dfB[matches$inds.b,]
        }
        out[["matches"]] <- matches
        out[["EM"]] <- resultsEM
        out[["patterns"]] <- patterns
        if(dedupe.matches & length(matches$inds.a) > 0){
            out[["posterior"]] <- ddm.out$max.zeta
        }else if(length(matches$inds.a) > 0){
            out[["posterior"]] <- zeta
        }
        if(reweight.names & length(matches$inds.a) > 0){
            out[["posterior"]] <- rwn.out
        }
        out[["nobs.a"]] <- nr_a
        out[["nobs.b"]] <- nr_b
        if(return.all){
            class(out) <- c("fastLink", "confusionTable")
        }else{
            class(out) <- "fastLink"
        }
        if(dedupe.df){
            class(out) <- c(class(out), "fastLink.dedupe")
        }
    }else{
        out <- resultsEM
    }

    return(out)

}

Try the fastLink package in your browser

Any scripts or data that you put into this service are public.

fastLink documentation built on Nov. 17, 2023, 9:06 a.m.