FKM.gkb | R Documentation |
Performs the Gustafson, Kessel and Babuska - like fuzzy k-means clustering algorithm.
Differently from fuzzy k-means, it is able to discover non-spherical clusters.
The Babuska et al. variant improves the computation of the fuzzy covariance matrices in the standard Gustafson and Kessel clustering algorithm.
FKM.gkb (X, k, m, vp, gam, mcn, RS, stand, startU, index, alpha, conv, maxit, seed)
X |
Matrix or data.frame |
k |
An integer value or vector specifying the number of clusters for which the |
m |
Parameter of fuzziness (default: 2) |
vp |
Volume parameter (default: rep(1,k)) |
gam |
Weighting parameter for the fuzzy covariance matrices (default: 0) |
mcn |
Maximum condition number for the fuzzy covariance matrices (default: 1e+15) |
RS |
Number of (random) starts (default: 1) |
stand |
Standardization: if |
startU |
Rational start for the membership degree matrix |
index |
Cluster validity index to select the number of clusters: |
alpha |
Weighting coefficient for the fuzzy silhouette index |
conv |
Convergence criterion (default: 1e-9) |
maxit |
Maximum number of iterations (default: 1e+2) |
seed |
Seed value for random number generation (default: NULL) |
If startU
is given, the argument k
is ignored (the number of clusters is ncol(startU)
).
If startU
is given, the first element of value
, cput
and iter
refer to the rational start.
If a cluster covariance matrix becomes singular, then the algorithm stops and the element of value
is NaN.
Object of class fclust
, which is a list with the following components:
U |
Membership degree matrix |
H |
Prototype matrix |
F |
Array containing the covariance matrices of all the clusters |
clus |
Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2) |
medoid |
Vector containing the indexes of the medoid objects ( |
value |
Vector containing the loss function values for the |
criterion |
Vector containing the values of clustering index |
iter |
Vector containing the numbers of iterations for the |
k |
Number of clusters |
m |
Parameter of fuzziness |
ent |
Degree of fuzzy entropy ( |
b |
Parameter of the polynomial fuzzifier ( |
vp |
Volume parameter |
delta |
Noise distance ( |
gam |
Weighting parameter for the fuzzy covariance matrices |
mcn |
Maximum condition number for the fuzzy covariance matrices |
stand |
Standardization (Yes if |
Xca |
Data used in the clustering algorithm (standardized data if |
X |
Raw data |
D |
Dissimilarity matrix ( |
call |
Matched call |
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
Babuska R., van der Veen P.J., Kaymak U., 2002. Improved covariance estimation for Gustafson-Kessel clustering. Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1081-1085.
Gustafson E.E., Kessel W.C., 1978. Fuzzy clustering with a fuzzy covariance matrix. Proceedings of the IEEE Conference on Decision and Control, pp. 761-766.
FKM.gk
, Fclust
, Fclust.index
, print.fclust
, summary.fclust
, plot.fclust
, unemployment
## Not run: ## unemployment data data(unemployment) ## Gustafson, Kessel and Babuska-like fuzzy k-means, fixing the number of clusters clust=FKM.gkb(unemployment,k=3,RS=10) ## Gustafson, Kessel and Babuska-like fuzzy k-means, selecting the number of clusters clust=FKM.gkb(unemployment,k=2:6,RS=10) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.