| JACCARD.F | R Documentation |
Produces the fuzzy version of the Jaccard index between a hard (reference) partition and a fuzzy partition.
JACCARD.F(VC, U, t_norm)
VC |
Vector of class labels |
U |
Fuzzy membership degree matrix or data.frame |
t_norm |
Type of the triangular norm: "minimum" (minimum triangular norm), "triangular product" (product norm) (default: "minimum") |
jaccard.f |
Value of the fuzzy Jaccard index |
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
Campello, R.J., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28, 833-841.
Jaccard, P., 1901. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547-579.
ARI.F, RI.F, Fclust.compare
## Not run:
## McDonald's data
data(Mc)
names(Mc)
## data normalization by dividing the nutrition facts by the Serving Size (column 1)
for (j in 2:(ncol(Mc)-1))
Mc[,j]=Mc[,j]/Mc[,1]
## removing the column Serving Size
Mc=Mc[,-1]
## fuzzy k-means
## (excluded the factor column Type (last column))
clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1)
## fuzzy Jaccard index
jaccard.f=JACCARD.F(VC=Mc$Type,U=clust$U)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.