FKM.med | R Documentation |
Performs the fuzzy k-medoids clustering algorithm.
Differently from fuzzy k-means where the cluster prototypes (centroids) are artificial objects computed as weighted means, in the fuzzy k-medoids the cluster prototypes (medoids) are a subset of the observed objects.
FKM.med (X, k, m, RS, stand, startU, index, alpha, conv, maxit, seed)
X |
Matrix or data.frame |
k |
An integer value or vector indicating the number of clusters (default: 2:6) |
m |
Parameter of fuzziness (default: 1.5) |
RS |
Number of (random) starts (default: 1) |
stand |
Standardization: if |
startU |
Rational start for the membership degree matrix |
index |
Cluster validity index to select the number of clusters: |
alpha |
Weighting coefficient for the fuzzy silhouette index |
conv |
Convergence criterion (default: 1e-9) |
maxit |
Maximum number of iterations (default: 1e+6) |
seed |
Seed value for random number generation (default: NULL) |
If startU
is given, the argument k
is ignored (the number of clusters is ncol(startU)
).
If startU
is given, the first element of value
, cput
and iter
refer to the rational start.
In FKM.med
the parameter of fuzziness is usually lower than the one used in FKM
.
Object of class fclust
, which is a list with the following components:
U |
Membership degree matrix |
H |
Prototype matrix |
F |
Array containing the covariance matrices of all the clusters ( |
clus |
Matrix containing the indexes of the clusters where the objects are assigned (column 1) and the associated membership degrees (column 2) |
medoid |
Vector containing the indexes of the medoid objects |
value |
Vector containing the loss function values for the |
criterion |
Vector containing the values of the cluster validity index |
iter |
Vector containing the numbers of iterations for the |
k |
Number of clusters |
m |
Parameter of fuzziness |
ent |
Degree of fuzzy entropy ( |
b |
Parameter of the polynomial fuzzifier ( |
vp |
Volume parameter ( |
delta |
Noise distance ( |
gam |
Weighting parameter for the fuzzy covariance matrices ( |
mcn |
Maximum condition number for the fuzzy covariance matrices ( |
stand |
Standardization (Yes if |
Xca |
Data used in the clustering algorithm (standardized data if |
X |
Raw data |
D |
Dissimilarity matrix ( |
call |
Matched call |
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
Krishnapuram R., Joshi A., Nasraoui O., Yi L., 2001. Low-complexity fuzzy relational clustering algorithms for web mining. IEEE Transactions on Fuzzy Systems, 9, 595-607.
FKM.med.noise
, Fclust
, Fclust.index
, print.fclust
, summary.fclust
, plot.fclust
, Mc
## Not run: ## McDonald's data data(Mc) names(Mc) ## data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2:(ncol(Mc)-1)) Mc[,j]=Mc[,j]/Mc[,1] ## removing the column Serving Size Mc=Mc[,-1] ## fuzzy k-medoids, fixing the number of clusters ## (excluded the factor column Type (last column)) clust=FKM.med(Mc[,1:(ncol(Mc)-1)],k=6,m=1.1,RS=10,stand=1) ## fuzzy k-medoids, selecting the number of clusters ## (excluded the factor column Type (last column)) clust=FKM.med(Mc[,1:(ncol(Mc)-1)],k=2:6,m=1.1,RS=10,stand=1) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.