Fclust | R Documentation |
Performs fuzzy clustering by using the algorithms available in the package.
Fclust (X, k, type, ent, noise, stand, distance)
X |
Matrix or data.frame |
k |
An integer value specifying the number of clusters (default: 2) |
type |
Fuzzy clustering algorithm: |
ent |
If |
noise |
If |
stand |
Standardization: if |
distance |
If |
The clustering algorithms are run by using default options.
To specify different options, use the corresponding function.
clust |
Object of class |
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
print.fclust
, summary.fclust
, plot.fclust
, FKM
, FKM.ent
, FKM.gk
, FKM.gk.ent
, FKM.gkb
, FKM.gkb.ent
, FKM.med
, FKM.pf
, FKM.noise
, FKM.ent.noise
, FKM.gk.noise
, FKM.gkb.ent.noise
, FKM.gkb.noise
, FKM.gk.ent.noise
,FKM.med.noise
, FKM.pf.noise
, NEFRC
, NEFRC.noise
, Fclust.index
, Fclust.compare
## Not run: ## McDonald's data data(Mc) names(Mc) ## data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2:(ncol(Mc)-1)) Mc[,j]=Mc[,j]/Mc[,1] ## removing the column Serving Size Mc=Mc[,-1] ## fuzzy k-means ## (excluded the factor column Type (last column)) clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=FALSE,noise=FALSE,stand=1,distance=FALSE) ## fuzzy k-means with polynomial fuzzifier ## (excluded the factor column Type (last column)) clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="polynomial",ent=FALSE,noise=FALSE,stand=1,distance=FALSE) ## fuzzy k-means with entropy regularization ## (excluded the factor column Type (last column)) clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=TRUE,noise=FALSE,stand=1,distance=FALSE) ## fuzzy k-means with noise cluster ## (excluded the factor column Type (last column)) clust=Fclust(Mc[,1:(ncol(Mc)-1)],k=6,type="standard",ent=FALSE,noise=TRUE,stand=1,distance=FALSE) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.