SIL.F | R Documentation |
Produces the fuzzy silhouette index. The optimal number of clusters k is is such that the index takes the maximum value.
SIL.F (Xca, U, alpha, distance)
Xca |
Matrix or data.frame |
U |
Membership degree matrix |
alpha |
Weighting coefficient (default: 1) |
distance |
If |
Xca
should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then SIL.F
should be computed using the same standardized data.
Set distance=TRUE
if Xca
is a distance/dissimilarity matrix.
sil.f |
Value of the fuzzy silhouette index |
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
Campello R.J.G.B., Hruschka E.R., 2006. A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157, 2858-2875.
PC
, PE
, MPC
, SIL
, XB
, Fclust
, Mc
## McDonald's data data(Mc) names(Mc) ## data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2:(ncol(Mc)-1)) Mc[,j]=Mc[,j]/Mc[,1] ## removing the column Serving Size Mc=Mc[,-1] ## fuzzy k-means ## (excluded the factor column Type (last column)) clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1) ## fuzzy silhouette index sil.f=SIL.F(clust$Xca,clust$U)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.