SIL | R Documentation |
Produces the silhouette index. The optimal number of clusters k is is such that the index takes the maximum value.
SIL (Xca, U, distance)
Xca |
Matrix or data.frame |
U |
Membership degree matrix |
distance |
If |
Xca
should contain the same dataset used in the clustering algorithm, i.e., if the clustering algorithm is run using standardized data, then SIL
should be computed using the same standardized data.
Set distance=TRUE
if Xca
is a distance/dissimilarity matrix.
sil.obj |
Vector containing the silhouette indexes for all the objects |
sil |
Value of the silhouette index (mean of |
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
Kaufman L., Rousseeuw P.J., 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York.
PC
, PE
, MPC
, SIL.F
, XB
, Fclust
, Mc
## McDonald's data data(Mc) names(Mc) ## data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2:(ncol(Mc)-1)) Mc[,j]=Mc[,j]/Mc[,1] ## removing the column Serving Size Mc=Mc[,-1] ## fuzzy k-means ## (excluded the factor column Type (last column)) clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1) ## silhouette index sil=SIL(clust$Xca,clust$U)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.