View source: R/Fclust.compare.R
Fclust.compare | R Documentation |
Performs some measures of similarity between a hard (reference) partition and a fuzzy partition.
Fclust.compare(VC, U, index, tnorm)
VC |
Vector of class labels |
U |
Fuzzy membership degree matrix or data.frame |
index |
Measures of similarity: "ARI.F" (fuzzy version of the adjuster Rand index), "RI.F" (fuzzy version of the Rand index), "JACCARD.F" (fuzzy version of the Jaccard index), "ALL" for all the indexes (default: "ALL") |
tnorm |
Type of the triangular norm: "minimum" (minimum triangular norm), "triangular product" (product norm) (default: "minimum") |
index
is not case-sensitive. All the measures of similarity share the same properties of their non-fuzzy counterpart.
out.index
Vector containing the similarity measures
Paolo Giordani, Maria Brigida Ferraro, Alessio Serafini
Campello, R.J., 2007. A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment. Pattern Recognition Letters, 28, 833-841.
Hubert, L., Arabie, P., 1985. Comparing partitions. Journal of Classification, 2, 193-218.
Jaccard, P., 1901. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547-579.
Rand, W.M., 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846-850.
RI.F
, ARI.F
, JACCARD.F
## Not run: ## McDonald's data data(Mc) names(Mc) ## data normalization by dividing the nutrition facts by the Serving Size (column 1) for (j in 2:(ncol(Mc)-1)) Mc[,j]=Mc[,j]/Mc[,1] ## removing the column Serving Size Mc=Mc[,-1] ## fuzzy k-means ## (excluded the factor column Type (last column)) clust=FKM(Mc[,1:(ncol(Mc)-1)],k=6,m=1.5,stand=1) ## all measures of similarity all.indexes=Fclust.compare(VC=Mc$Type,U=clust$U) ## fuzzy adjusted Rand index Fari.index=Fclust.compare(VC=Mc$Type,U=clust$U,index="ARI.F") ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.