fregre.gls | R Documentation |
This function fits a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.
fregre.gls( formula, data, correlation = NULL, basis.x = NULL, basis.b = NULL, rn, lambda, weights = NULL, subset, method = c("REML", "ML"), control = list(), verbose = FALSE, criteria = "GCCV1", ... )
formula |
a two-sided linear formula object describing the model, with
the response on the left of a |
data |
an optional data frame containing the variables named in
|
correlation |
an optional |
basis.x |
List of basis for functional explanatory data estimation. |
basis.b |
List of basis for β(t) parameter estimation. |
rn |
List of Ridge parameter. |
lambda |
List of Roughness penalty parameter. |
weights |
an optional |
subset |
an optional expression indicating which subset of the rows of
|
method |
a character string. If |
control |
a list of control values for the estimation algorithm to
replace the default values returned by the function
|
verbose |
an optional logical value. If |
criteria |
GCCV criteria, see |
... |
some methods for this generic require additional arguments. None are used in this methodl. |
an object of class "gls"
representing the functional linear
model fit. Generic functions such as print
, plot
, and
summary
have methods to show the results of the fit.
See glsObject
for the components of the fit. The functions
resid
, coef
and fitted
, can be
used to extract some of its components.
Beside, the class(z) is "gls", "lm" and "fregre.lm" with the following
objects:
sr2:
Residual variance.
Vp:
Estimated covariance matrix for the parameters.
lambda:
A roughness penalty.
basis.x:
Basis used for fdata
or fd
covariates.
basis.b:
Basis used for beta parameter estimation.
beta.l:
List of estimated beta parameter of functional covariates.
data:
List that containing the variables in the model.
formula:
formula used in ajusted model.
formula.ini:
formula in call.
W:
inverse of covariance matrix
correlation:
See glsObject for the components of the fit.
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. (2018). Predicting seasonal influenza transmission using functional regression models with temporal dependence. PloS one, 13(4), e0194250. doi: 10.1371/journal.pone.0194250
## Not run: data(tecator) x=tecator$absorp.fdata x.d2<-fdata.deriv(x,nderiv=) tt<-x[["argvals"]] dataf=as.data.frame(tecator$y) # plot the response plot(ts(tecator$y$Fat)) nbasis.x=11;nbasis.b=7 basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x) basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b) basis.x=list("x.d2"=basis1) basis.b=list("x.d2"=basis2) ldata=list("df"=dataf,"x.d2"=x.d2) res.gls=fregre.gls(Fat~x.d2,data=ldata, correlation=corAR1(), basis.x=basis.x,basis.b=basis.b) summary(res.gls) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.