| fregre.gls | R Documentation | 
This function fits a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.
fregre.gls(
  formula,
  data,
  correlation = NULL,
  basis.x = NULL,
  basis.b = NULL,
  rn,
  lambda,
  weights = NULL,
  subset,
  method = c("REML", "ML"),
  control = list(),
  verbose = FALSE,
  criteria = "GCCV1",
  ...
)
formula | 
 a two-sided linear formula object describing the model, with
the response on the left of a   | 
data | 
 an optional data frame containing the variables named in
  | 
correlation | 
 an optional corStruct object describing the
within-group correlation structure. See the documentation of
corClasses for a description of the available   | 
basis.x | 
 List of basis for functional explanatory data estimation.  | 
basis.b | 
 List of basis for   | 
rn | 
 List of Ridge parameter.  | 
lambda | 
 List of Roughness penalty parameter.  | 
weights | 
 an optional varFunc object or one-sided formula
describing the within-group heteroscedasticity structure. If given as a
formula, it is used as the argument to varFixed, corresponding
to fixed variance weights. See the documentation on varClasses
for a description of the available varFunc classes. Defaults
to   | 
subset | 
 an optional expression indicating which subset of the rows of
  | 
method | 
 a character string.  If   | 
control | 
 a list of control values for the estimation algorithm to replace the default values returned by the function glsControl. Defaults to an empty list.  | 
verbose | 
 an optional logical value. If   | 
criteria | 
 GCCV criteria, see   | 
... | 
 some methods for this generic require additional arguments. None are used in this method.  | 
An object of class "gls" representing the functional linear
model fit. Generic functions such as print, plot, and
summary have methods to show the results of the fit.
 
See glsObject for the components of the fit. The functions
resid, coef, and fitted can be
used to extract some of its components.
 
Besides, the class(z) is "gls", "lm", and "fregre.lm" with the following
objects: 
sr2: Residual variance. 
Vp: Estimated covariance matrix for the parameters. 
lambda: A roughness penalty.
basis.x: Basis used for fdata or fd covariates.
basis.b: Basis used for beta parameter estimation. 
beta.l: List of estimated beta parameter of functional covariates. 
data: List containing the variables in the model. 
formula: Formula used in the adjusted model. 
formula.ini: Formula in call.
W: Inverse of covariance matrix. 
correlation: See glsObject for the components of the fit.
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. (2018). Predicting seasonal influenza transmission using functional regression models with temporal dependence. PloS one, 13(4), e0194250. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1371/journal.pone.0194250")}
## Not run:  
data(tecator)
x=tecator$absorp.fdata
x.d2<-fdata.deriv(x,nderiv=)
tt<-x[["argvals"]]
dataf=as.data.frame(tecator$y)
# plot the response
plot(ts(tecator$y$Fat))
nbasis.x=11;nbasis.b=7
basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b)
basis.x=list("x.d2"=basis1)
basis.b=list("x.d2"=basis2)
ldata=list("df"=dataf,"x.d2"=x.d2)
res.gls=fregre.gls(Fat~x.d2,data=ldata, correlation=corAR1(),
                   basis.x=basis.x,basis.b=basis.b)
summary(res.gls)                   
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.