| fregre.np.cv | R Documentation | 
Computes functional regression between functional explanatory variables and scalar response using asymmetric kernel estimation by cross-validation method.
fregre.np.cv(
  fdataobj,
  y,
  h = NULL,
  Ker = AKer.norm,
  metric = metric.lp,
  type.CV = GCV.S,
  type.S = S.NW,
  par.CV = list(trim = 0),
  par.S = list(w = 1),
  ...
)
| fdataobj | 
 | 
| y | Scalar response with length  | 
| h | Bandwidth,  | 
| Ker | Type of asymmetric kernel used, by default asymmetric normal kernel. | 
| metric | Metric function, by default  | 
| type.CV | Type of cross-validation. By default generalized
cross-validation  | 
| type.S | Type of smothing matrix  | 
| par.CV | List of parameters for  | 
| par.S | List of parameters for  | 
| ... | Arguments to be passed for  | 
The non-parametric functional regression model can be written as follows
 y_i =r(X_i) + \epsilon_i 
 where the unknown smooth real function
r is estimated using kernel estimation by means of
\hat{r}(X)=\frac{\sum_{i=1}^{n}{K(h^{-1}d(X,X_{i}))y_{i}}}{\sum_{i=1}^{n}{K(h^{-1}d(X,X_{i}))}}
where K is an kernel function (see Ker argument), h is
the smoothing parameter and d is a metric or a semi-metric (see
metric argument).
The function estimates the value of smoothing parameter (also called
bandwidth) h through Generalized Cross-validation GCV
criteria, see GCV.S or CV.S.
The function estimates the value of smoothing parameter or the bandwidth
through the cross validation methods: GCV.S or
CV.S. It computes the distance between curves using the
metric.lp, although any other semimetric could be used (see
semimetric.basis or semimetric.NPFDA functions).
Different asymmetric kernels can be used, see
Kernel.asymmetric.
Return:
call: The matched call.
residuals: y minus fitted values.
fitted.values: Estimated scalar response.
df.residual: The residual degrees of freedom.
r2: Coefficient of determination.
sr2: Residual variance.
H: Hat matrix.
y: Response.
fdataobj: Functional explanatory data.
mdist: Distance matrix between x and newx.
Ker: Asymmetric kernel used.
gcv: CV or GCV values.
h.opt: Smoothing parameter or bandwidth that minimizes CV or GCV method.
h: Vector of smoothing parameter or bandwidth.
cv: List with the fitted values and residuals estimated by CV, without the same curve.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also as: fregre.np,
summary.fregre.fd and predict.fregre.fd .
Alternative method: fregre.basis.cv and
fregre.np.cv.
## Not run: 
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
Ker=AKer.tri
res.np=fregre.np.cv(x,y,Ker=Ker)
summary(res.np)
res.np2=fregre.np.cv(x,y,type.CV=GCV.S,criteria="Shibata")
summary(res.np2)
## Example with other semimetrics (not run)
res.pca1=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.pca,q=1)
summary(res.pca1)
res.deriv=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.deriv)
summary(res.deriv)
x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out='fdata')
res.deriv2=fregre.np.cv(x.d2,y,Ker=Ker)
summary(res.deriv2)
x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out='fdata')
res.deriv3=fregre.np.cv(x.d3,y,Ker=Ker)
summary(res.deriv3)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.