metric.DTW | R Documentation |
Computes distances time warping for functional data
metric.DTW(fdata1, fdata2 = NULL, p = 2, w = min(ncol(fdata1), ncol(fdata2))) metric.WDTW( fdata1, fdata2 = NULL, p = 2, w = min(ncol(fdata1), ncol(fdata2)), wmax = 1, g = 0.05 ) metric.TWED(fdata1, fdata2 = NULL, p = 2, lambda = 1, nu = 0.05)
fdata1 |
Functional data 1 or curve 1. If |
fdata2 |
Functional data 2 or curve 2. If |
p |
Lp norm, by default it uses |
w |
Vector of weights with length |
wmax |
|
g |
|
lambda |
|
nu |
|
Three optins:
DTW: Dynamic time warping
WDTW: Weight Dynamic time warping
TWED: twed
DTW matrix
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Jeong, Y. S., Jeong, M. K., & Omitaomu, O. A. (2011). Weighted dynamic time warping for time series classification. Pattern Recognition, 44(9), 2231-2240
See also semimetric.basis
and semimetric.NPFDA
## Not run: data(tecator) metric.DTW(tecator$absorp.fdata[1:4,]) ab=tecator[[1]] D1=fda.usc:::DTW(ab$data[1,],ab$data[2,],p=2) aa1=fda.usc:::findPath(D1$D) D2=fda.usc:::DTW(ab$data[1,],ab$data[2,],p=2,w=5) aa2=fda.usc:::findPath(D2$D) D3=fda.usc:::WDTW(ab$data[1,],ab$data[2,],p=2,g=0.05) aa3=fda.usc:::findPath(D3$D) D4=fda.usc:::TWED(ab$data[1,],ab$data[2,],p=2,lambda=0,nu=0) aa4=fda.usc:::findPath(D4$D) par(mfrow=c(2,2)) plot(c(ab[1:2])) segments(ab$argvals[aa1[,1]],ab[1]$data[aa1[,1]],ab$argvals[aa1[,2]],ab[2]$data[aa1[,2]]) plot(c(ab[1:2])) segments(ab$argvals[aa2[,1]],ab[1]$data[aa2[,1]],ab$argvals[aa2[,2]],ab[2]$data[aa2[,2]],col=2) plot(c(ab[1:2])) segments(ab$argvals[aa3[,1]],ab[1]$data[aa3[,1]],ab$argvals[aa3[,2]],ab[2]$data[aa3[,2]],col=3) plot(c(ab[1:2])) segments(ab$argvals[aa4[,1]],ab[1]$data[aa4[,1]],ab$argvals[aa4[,2]],ab[2]$data[aa4[,2]],col=4) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.