rdir.pc: Data-driven sampling of random directions guided by sample of...

View source: R/rp.flm.test.R

rdir.pcR Documentation

Data-driven sampling of random directions guided by sample of functional data

Description

Generation of random directions based on the principal components \hat e_1,...,\hat e_k of a sample of functional data X_1,...,X_n. The random directions are sampled as

h=∑_{j=1}^kh_j\hat e_j,

with h_j~N(0, σ_j^2), j=1,...,k. Useful for sampling non-orthogonal random directions h such that they are non-orthogonal for the random sample.

Usage

rdir.pc(
  n,
  X.fdata,
  ncomp = 0.95,
  fdata2pc.obj = fdata2pc(X.fdata, ncomp = min(length(X.fdata$argvals), nrow(X.fdata))),
  sd = 0,
  zero.mean = TRUE,
  norm = FALSE
)

Arguments

n

number of curves to be generated.

X.fdata

an fdata object used to compute the functional principal components.

ncomp

if an integer vector is provided, the index for the principal components to be considered. If a threshold between 0 and 1 is given, the number of components k is determined automatically as the minimum number that explains at least the ncomp proportion of the total variance of X.fdata.

fdata2pc.obj

output of fdata2pc containing as many components as the ones to be selected by ncomp. Otherwise, it is computed internally.

sd

if 0, the standard deviations σ_j are estimated by the standard deviations of the scores for e_j. If not, the σ_j's are set to sd.

zero.mean

whether the projections should have zero mean. If not, the mean is set to the mean of X.fdata.

norm

whether the samples should be L2-normalized or not.

Value

A fdata object with the sampled directions.

Author(s)

Eduardo Garcia-Portugues (edgarcia@est-econ.uc3m.es) and Manuel Febrero-Bande (manuel.febrero@usc.es).

Examples

## Not run: 
# Simulate some data
set.seed(345673)
X.fdata <- r.ou(n = 200, mu = 0, alpha = 1, sigma = 2, t = seq(0, 1, l = 201), 
                x0 = rep(0, 200))
pc <- fdata2pc(X.fdata, ncomp = 20)

# Samples
set.seed(34567)
rdir.pc(n = 5, X.fdata = X.fdata, zero.mean = FALSE)$data[, 1:5]
set.seed(34567)
rdir.pc(n = 5, X.fdata = X.fdata, fdata2pc.obj = pc)$data[, 1:5]

# Comparison for the variance type
set.seed(456732)
n.proj <- 100
set.seed(456732)
samp1 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 1, norm = FALSE, ncomp = 0.99)
set.seed(456732)
samp2 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 0, norm = FALSE, ncomp = 0.99)
set.seed(456732)
samp3 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 1, norm = TRUE, ncomp = 0.99)
set.seed(456732)
samp4 <- rdir.pc(n = n.proj, X.fdata = X.fdata, sd = 0, norm = TRUE, ncomp = 0.99)
par(mfrow = c(1, 2))
plot(X.fdata, col = gray(0.85), lty = 1)
lines(samp1[1:10], col = 2, lty = 1)
lines(samp2[1:10], col = 4, lty = 1)
legend("topleft", legend = c("Data", "Different variances", "Equal variances"), 
       col = c(gray(0.85), 2, 4), lwd = 2)
plot(X.fdata, col = gray(0.85), lty = 1)
lines(samp3[1:10], col = 5, lty = 1)
lines(samp4[1:10], col = 6, lty = 1)
legend("topleft", legend = c("Data", "Different variances, normalized", 
       "Equal variances, normalized"), col = c(gray(0.85), 5:6), lwd = 2)

# Correlations (stronger with different variances and unnormalized; 
# stronger with lower ncomp)
ind <- lower.tri(matrix(nrow = n.proj, ncol = n.proj))
median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp1[i]))))[ind])
median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp2[i]))))[ind])
median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp3[i]))))[ind])
median(abs(cor(sapply(1:n.proj, function(i) inprod.fdata(X.fdata, samp4[i]))))[ind])

# Comparison for the threshold
samp1 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.25, fdata2pc.obj = pc)
samp2 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.50, fdata2pc.obj = pc)
samp3 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.90, fdata2pc.obj = pc)
samp4 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.95, fdata2pc.obj = pc)
samp5 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.99, fdata2pc.obj = pc)
cols <- rainbow(5, alpha = 0.25)
par(mfrow = c(3, 2))
plot(X.fdata, col = gray(0.75), lty = 1, main = "Data")
plot(samp1, col = cols[1], lty = 1, main = "Threshold = 0.25")
plot(samp2, col = cols[2], lty = 1, main = "Threshold = 0.50")
plot(samp3, col = cols[3], lty = 1, main = "Threshold = 0.90")
plot(samp4, col = cols[4], lty = 1, main = "Threshold = 0.95")
plot(samp5, col = cols[5], lty = 1, main = "Threshold = 0.99")

# Normalizing
samp1 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.50, fdata2pc.obj = pc,
                 norm = TRUE)
samp2 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.90, fdata2pc.obj = pc,
                 norm = TRUE)
samp3 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.95, fdata2pc.obj = pc,
                 norm = TRUE)
samp4 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.99, fdata2pc.obj = pc,
                 norm = TRUE)
samp5 <- rdir.pc(n = 100, X.fdata = X.fdata, ncomp = 0.999, fdata2pc.obj = pc,
                 norm = TRUE)
cols <- rainbow(5, alpha = 0.25)
par(mfrow = c(3, 2))
plot(X.fdata, col = gray(0.75), lty = 1, main = "Data")
plot(samp1, col = cols[1], lty = 1, main = "Threshold = 0.50")
plot(samp2, col = cols[2], lty = 1, main = "Threshold = 0.90")
plot(samp3, col = cols[3], lty = 1, main = "Threshold = 0.95")
plot(samp4, col = cols[4], lty = 1, main = "Threshold = 0.99")
plot(samp5, col = cols[5], lty = 1, main = "Threshold = 0.999")

## End(Not run)

fda.usc documentation built on Oct. 17, 2022, 9:06 a.m.