Nothing
# Authors: Mauro Bernardi
# Department Statistical Sciences
# University of Padova
# Via Cesare Battisti, 241
# 35121 PADOVA, Italy
# E-mail: mauro.bernardi@unipd.it
# Last change: March 16, 2023
#' Overlap Group Least Absolute Shrinkage and Selection Operator for function-on-function regression model
#'
#' Overlap Group-LASSO for function-on-function regression model solves the following optimization problem
#' \deqn{\textrm{min}_{\psi} ~ \frac{1}{2} \sum_{i=1}^n \int \left( y_i(s) - \int x_i(t) \psi(t,s) dt \right)^2 ds + \lambda \sum_{g=1}^{G} \Vert S_{g}T\psi \Vert_2}
#' to obtain a sparse coefficient vector \eqn{\psi=\mathsf{vec}(\Psi)\in\mathbb{R}^{ML}} for the functional penalized predictor \eqn{x(t)}, where the coefficient matrix \eqn{\Psi\in\mathbb{R}^{M\times L}},
#' the regression function \eqn{\psi(t,s)=\varphi(t)^\intercal\Psi\theta(s)},
#' \eqn{\varphi(t)} and \eqn{\theta(s)} are two B-splines bases of order \eqn{d} and dimension \eqn{M} and \eqn{L}, respectively. For each group \eqn{g}, each row of
#' the matrix \eqn{S_g\in\mathbb{R}^{d\times ML}} has non-zero entries only for those bases belonging
#' to that group. These values are provided by the arguments \code{groups} and \code{group_weights} (see below).
#' Each basis function belongs to more than one group. The diagonal matrix \eqn{T\in\mathbb{R}^{ML\times ML}} contains
#' the basis-specific weights. These values are provided by the argument \code{var_weights} (see below).
#' The regularization path is computed for the overlap group-LASSO penalty at a grid of values for the regularization
#' parameter \eqn{\lambda} using the alternating direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022)
#' for details on the ADMM method.
#'
#' @param mX an \eqn{(n\times r_x)} matrix of observations of the functional covariate.
#' @param mY an \eqn{(n\times r_y)} matrix of observations of the functional response variable.
#' @param L number of elements of the B-spline basis vector \eqn{\theta(s)}.
#' @param M number of elements of the B-spline basis vector \eqn{\varphi(t)}.
#' @param group_weights a vector of length \eqn{G} containing group-specific weights. The default is square root of the group cardinality, see Bernardi et al. (2022).
#' @param var_weights a vector of length \eqn{ML} containing basis-specific weights. The default is a vector where
#' each entry is the reciprocal of the number of groups including that basis. See Bernardi et al. (2022) for details.
#' @param standardize.data logical. Should data be standardized?
#' @param splOrd the order \eqn{d} of the spline basis.
#' @param lambda either a regularization parameter or a vector of regularization parameters.
#' In this latter case the routine computes the whole path. If it is NULL values for lambda are provided by the routine.
#' @param lambda.min.ratio smallest value for lambda, as a fraction of the maximum lambda value. If \eqn{nr_y>LM}, the default is 0.0001, and if \eqn{nr_y<LM}, the default is 0.01.
#' @param nlambda the number of lambda values - default is 30.
#' @param overall.group logical. If it is TRUE, an overall group including all penalized covariates is added.
#' @param control a list of control parameters for the ADMM algorithm. See ‘Details’.
#'
#' @return A named list containing \describe{
#' \item{sp.coefficients}{an \eqn{(M\times L)} solution matrix for the parameters \eqn{\Psi}, which corresponds to the minimum in-sample MSE.}
#' \item{sp.coef.path}{an \eqn{(n_\lambda\times M \times L)} array of estimated \eqn{\Psi} coefficients for each lambda.}
#' \item{sp.fun}{an \eqn{(r_x\times r_y)} matrix providing the estimated functional coefficient for \eqn{\psi(t,s)}.}
#' \item{sp.fun.path}{an \eqn{(n_\lambda\times r_x\times r_y)} array providing the estimated functional coefficients for \eqn{\psi(t,s)} for each lambda.}
#' \item{lambda}{sequence of lambda.}
#' \item{lambda.min}{value of lambda that attains the minimum in-sample MSE.}
#' \item{mse}{in-sample mean squared error.}
#' \item{min.mse}{minimum value of the in-sample MSE for the sequence of lambda.}
#' \item{convergence}{logical. 1 denotes achieved convergence.}
#' \item{elapsedTime}{elapsed time in seconds.}
#' \item{iternum}{number of iterations.}
#' }
#'
#' When you run the algorithm, output returns not only the solution, but also the iteration history recording
#' following fields over iterates,
#' \describe{
#' \item{objval}{objective function value.}
#' \item{r_norm}{norm of primal residual.}
#' \item{s_norm}{norm of dual residual.}
#' \item{eps_pri}{feasibility tolerance for primal feasibility condition.}
#' \item{eps_dual}{feasibility tolerance for dual feasibility condition.}
#' }
#' Iteration stops when both \code{r_norm} and \code{s_norm} values
#' become smaller than \code{eps_pri} and \code{eps_dual}, respectively.
#' @section Details: The control argument is a list that can supply any of the following components:\describe{
#' \item{adaptation}{logical. If it is TRUE, ADMM with adaptation is performed. The default value is TRUE. See Boyd et al. (2011) for details.}
#' \item{rho}{an augmented Lagrangian parameter. The default value is 1.}
#' \item{tau.ada}{an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.}
#' \item{mu.ada}{an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 10. See Boyd et al. (2011) and Lin et al. (2022) for details.}
#' \item{abstol}{absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine$double.eps)).}
#' \item{reltol}{relative tolerance stopping criterion. The default value is sqrt(.Machine$double.eps).}
#' \item{maxit}{maximum number of iterations. The default value is 100.}
#' \item{print.out}{logical. If it is TRUE, a message about the procedure is printed. The default value is TRUE.}
#' }
#'
#' @examples
#'
#' ## generate sample data
#' set.seed(4321)
#' s <- seq(0, 1, length.out = 100)
#' t <- seq(0, 1, length.out = 100)
#' p1 <- 5
#' p2 <- 6
#' r <- 10
#' n <- 50
#'
#' beta_basis1 <- splines::bs(s, df = p1, intercept = TRUE) # first basis for beta
#' beta_basis2 <- splines::bs(s, df = p2, intercept = TRUE) # second basis for beta
#'
#' data_basis <- splines::bs(s, df = r, intercept = TRUE) # basis for X
#'
#' x_0 <- apply(matrix(rnorm(p1 * p2, sd = 1), p1, p2), 1,
#' fdaSP::softhresh, 1.5) # regression coefficients
#' x_fun <- beta_basis2 %*% x_0 %*% t(beta_basis1)
#'
#' fun_data <- matrix(rnorm(n*r), n, r) %*% t(data_basis)
#' b <- fun_data %*% x_fun + rnorm(n * 100, sd = sd(fun_data %*% x_fun )/3)
#'
#' ## set the hyper-parameters
#' maxit <- 1000
#' rho_adaptation <- FALSE
#' rho <- 1
#' reltol <- 1e-5
#' abstol <- 1e-5
#'
#' ## fit functional regression model
#' mod <- f2fSP(mY = b, mX = fun_data, L = p1, M = p2,
#' group_weights = NULL, var_weights = NULL, standardize.data = FALSE, splOrd = 4,
#' lambda = NULL, nlambda = 30, lambda.min.ratio = NULL,
#' control = list("abstol" = abstol,
#' "reltol" = reltol,
#' "maxit" = maxit,
#' "adaptation" = rho_adaptation,
#' rho = rho,
#' "print.out" = FALSE))
#'
#' mycol <- function (n) {
#' palette <- colorRampPalette(RColorBrewer::brewer.pal(11, "Spectral"))
#' palette(n)
#' }
#' cols <- mycol(1000)
#'
#' oldpar <- par(mfrow = c(1, 2))
#' image(x_0, col = cols)
#' image(mod$sp.coefficients, col = cols)
#' par(oldpar)
#'
#' oldpar <- par(mfrow = c(1, 2))
#' image(x_fun, col = cols)
#' contour(x_fun, add = TRUE)
#' image(beta_basis2 %*% mod$sp.coefficients %*% t(beta_basis1), col = cols)
#' contour(beta_basis2 %*% mod$sp.coefficients %*% t(beta_basis1), add = TRUE)
#' par(oldpar)
#'
#' @references
#' \insertRef{bernardi_etal.2022}{fdaSP}
#'
#' \insertRef{boyd_etal.2011}{fdaSP}
#'
#' \insertRef{jenatton_etal.2011}{fdaSP}
#'
#' \insertRef{lin_etal.2022}{fdaSP}
#'
#' @export
f2fSP <- function(mY, mX, L, M, group_weights = NULL, var_weights = NULL, standardize.data = TRUE,
splOrd = 4, lambda = NULL, lambda.min.ratio = NULL, nlambda = 30, overall.group = FALSE,
control = list()) {
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get dimensions
n <- dim(mX)[1] # number of observations
p <- dim(mX)[2]
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Create the B-spline basis functions
s <- seq(0, 1, length.out = p)
mH <- t(splines::bs(s, df = M, intercept = TRUE))
mTheta <- t(splines::bs(s, df = L, intercept = TRUE))
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Define response and design matrix
mY_B <- mY
mX_B <- tcrossprod(mX, mH)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Vectorisation form
X_ <- kronecker(t(mTheta), mX_B)
y_ <- matrix(ks::vec(mY_B, byrow = FALSE), ncol = 1)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Standardise response and design matrix
if (standardize.data == TRUE) {
res <- standardizemat(X_, y_)
X.std <- res$X.std
y.std <- res$y.std
mU <- res$mU
mV <- res$mV
} else {
X.std <- X_
y.std <- y_
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Pre-processing: lambda parameter (in case of a single lambda)
if (!is.null(lambda)) {
if (length(lambda) == 1) {
meps <- (.Machine$double.eps)
negsmall <- -meps
if (!check_param_constant(lambda, negsmall)) {
stop("* f2fSP : reg. parameter 'lambda' is invalid.")
}
if (lambda < meps){
message("* f2fSP : since 'lambda' is effectively zero, a least-squares solution is returned.")
xsol <- as.vector(aux_pinv(X_) %*% matrix(y_))
output <- list()
output$x <- xsol
return(output)
}
}
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# check for inputs
npar <- dim(X.std)[2]
con <- list(maxit = 100L,
abstol = sqrt(.Machine$double.eps),
reltol = sqrt(sqrt(.Machine$double.eps)),
adaptation = TRUE,
rho = 1,
tau.ada = 2,
mu.ada = 10,
par.init = NULL,
init.rnd = FALSE,
print.out = TRUE)
nmsC <- names(con)
con[(namc <- names(control))] <- control
if (length(noNms <- namc[!namc %in% nmsC])) {
warning("unknown names in control: ", paste(noNms, collapse = ", "))
}
# set default values (for inputs)
maxit <- con$maxit
abstol <- con$abstol
reltol <- con$reltol
adaptation <- con$adaptation
rho <- con$rho
tau.ada <- con$tau.ada
mu.ada <- con$mu.ada
par.init <- con$par.init
init.rnd <- con$init.rnd
print.out <- con$print.out
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Pre-processing: variable weights
check_weights(x = var_weights, n = dim(X_)[2], algname = "f2fSP", funname = "var_weights")
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get the groups of the overlap group LASSO penalty
if (overall.group == TRUE) {
out <- penfun(method = "ogl&1", p = M, q = L, splOrd = splOrd, regpars = NULL)
} else {
out <- penfun(method = "ogl", p = M, q = L, splOrd = splOrd, regpars = NULL)
}
GRmat <- out$grMat
G <- dim(GRmat)[1]
nG <- rowSums(GRmat)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Manage group & overall group weights
if (is.null(group_weights)) {
# Define the weights as in Yuan and Lin 2006, JRSSB
group_weights <- sqrt(diag(tcrossprod(GRmat)))
} else {
if (overall.group == TRUE) {
check_group_weights(x = group_weights, n = G, algname = "f2fSP", funname = "group_weights")
if (length(group_weights) == (G-1)) {
group_weights <- c(group_weights, sqrt(dim(GRmat)[2]))
}
} else {
check_weights(x = group_weights, n = G, algname = "f2fSP", funname = "group_weights")
}
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Manage variable weights
if (is.null(var_weights)) {
var_weights <- 1.0 / colSums(GRmat)
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get the sequence of lambda
if (!is.null(nlambda) && is.null(lambda)) {
# get the smallest value of such that the regression
# coefficients estimated by the lasso are all equal to zero
lambda <- lm_lambdamax_OVGLASSO(X = X.std, y = y.std,
groups = NULL, GRmat = out$grMat, group_weights = group_weights, var_weights = var_weights,
lambda.min.ratio = lambda.min.ratio, maxl = nlambda)$lambda.seq
}
if (is.null(nlambda) && is.null(lambda)) {
# get the smallest value of such that the regression
# coefficients estimated by the lasso are all equal to zero
lambda <- lm_lambdamax_OVGLASSO(X = X.std, y = y.std,
groups = NULL, GRmat = out$grMat, group_weights = group_weights, var_weights = var_weights,
lambda.min.ratio = lambda.min.ratio, maxl = 30)$lambda.seq
}
if (!is.null(lambda)) {
nlambda <- length(lambda)
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Store output
mRegP <- matrix(0, nrow = M * L, ncol = nlambda)
vMse <- rep(0, nlambda)
vConv <- rep(0, nlambda)
vRunTime <- rep(0, nlambda)
vIterN <- rep(0, nlambda)
objfun <- vector(mode = "list", length = nlambda)
r_norm <- vector(mode = "list", length = nlambda)
s_norm <- vector(mode = "list", length = nlambda)
err_pri <- vector(mode = "list", length = nlambda)
err_dual <- vector(mode = "list", length = nlambda)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Run the ADMM algorithm
ret <- .admm_ovglasso_fast(A = X.std, b = y.std, groups = out$grMat, group_weights = group_weights, var_weights = var_weights,
lambda = lambda, rho_adaptation = adaptation, rho = rho, tau = tau.ada, mu = mu.ada,
reltol = reltol, abstol = abstol, maxiter = maxit, ping = 0)
# ret <- .Call("admm_ovglasso_fast",
# A = X.std, b = y.std, groups = out$grMat, group_weights = group_weights, var_weights = var_weights,
# lambda = lambda, rho_adaptation = adaptation, rho = rho, tau = tau.ada, mu = mu.ada,
# reltol = reltol, abstol = abstol, maxiter = maxit, ping = 0)
# get estimated coefficients and path
mSpRegP <- t(ret$coef.path)
vSpRegP <- ret$coefficients
if (standardize.data == TRUE) {
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get the path and retrieve the scaled estimates
sp.path <- array(dim = c(nlambda, M, L), data = t(apply(mSpRegP, 2, function(x) solve(mU) %*% x %*% mV)))
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Retrieve estimated parameters
mSpRegP_ <- matrix(solve(mU) %*% vSpRegP %*% mV, nrow = M, ncol = L)
} else {
sp.path <- array(dim = c(nlambda, M, L), data = t(mSpRegP))
mSpRegP_ <- invvec(vSpRegP, L, M, byrow = FALSE)
}
# get the estimated functions
# sp.fun.path <- t(mTheta) %*% sp.path %*% mH
# sp.fun.path <- array(data = apply(sp.path, 1, function(x){t(mTheta) %*% x %*% mH}),
# dim = c(nlambda, p, p))
sp.fun.path <- array(data = apply(sp.path, 1, function(x){t(mH) %*% x %*% mTheta}),
dim = c(nlambda, p, p))
# sp.fun <- t(mTheta) %*% mSpRegP_ %*% mH
sp.fun <- t(mH) %*% mSpRegP_ %*% mTheta
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Print to screen
if (print.out == TRUE) {
cat("\n\n\n")
cat("Function to function regression model with overlap group-LASSO penalty\n")
cat("running time (for ", reltol, " relative error):",
sum(ret$elapsedTime), "seconds \n\n\n")
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get output
res.names <- c("sp.coefficients",
"sp.coef.path",
"sp.fun.path",
"sp.fun",
"lambda.min",
"lambda",
"mse",
"min.mse",
"convergence",
"elapsedTime",
"iternum",
"objfun",
"r_norm",
"s_norm",
"err_pri",
"err_dual",
"rho")
res <- vector(mode = "list", length = length(res.names))
names(res) <- res.names
res$sp.coefficients <- mSpRegP_
res$sp.coef.path <- sp.path
res$sp.fun.path <- sp.fun.path
res$sp.fun <- sp.fun
res$lambda.min <- ret$lambda.min
res$lambda <- ret$lambda
res$mse <- ret$mse
res$min.mse <- ret$min.mse
res$convergence <- ret$convergence
res$elapsedTime <- ret$elapsedTime
res$iternum <- ret$iternum
res$objfun <- ret$objfun
res$r_norm <- ret$r_norm
res$s_norm <- ret$s_norm
res$err_pri <- ret$err_pri
res$err_dual <- ret$err_dual
res$rho <- ret$rho
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Return output
return(res)
}
#' Cross-validation for Overlap Group Least Absolute Shrinkage and Selection Operator for function-on-function regression model
#'
#' Overlap Group-LASSO for function-on-function regression model solves the following optimization problem
#' \deqn{\textrm{min}_{\psi} ~ \frac{1}{2} \sum_{i=1}^n \int \left( y_i(s) - \int x_i(t) \psi(t,s) dt \right)^2 ds + \lambda \sum_{g=1}^{G} \Vert S_{g}T\psi \Vert_2}
#' to obtain a sparse coefficient vector \eqn{\psi=\mathsf{vec}(\Psi)\in\mathbb{R}^{ML}} for the functional penalized predictor \eqn{x(t)}, where the coefficient matrix \eqn{\Psi\in\mathbb{R}^{M\times L}},
#' the regression function \eqn{\psi(t,s)=\varphi(t)^\intercal\Psi\theta(s)},
#' \eqn{\varphi(t)} and \eqn{\theta(s)} are two B-splines bases of order \eqn{d} and dimension \eqn{M} and \eqn{L}, respectively. For each group \eqn{g}, each row of
#' the matrix \eqn{S_g\in\mathbb{R}^{d\times ML}} has non-zero entries only for those bases belonging
#' to that group. These values are provided by the arguments \code{groups} and \code{group_weights} (see below).
#' Each basis function belongs to more than one group. The diagonal matrix \eqn{T\in\mathbb{R}^{ML\times ML}} contains
#' the basis-specific weights. These values are provided by the argument \code{var_weights} (see below).
#' The regularization path is computed for the overlap group-LASSO penalty at a grid of values for the regularization
#' parameter \eqn{\lambda} using the alternating direction method of multipliers (ADMM). See Boyd et al. (2011) and Lin et al. (2022)
#' for details on the ADMM method.
#'
#' @param mX an \eqn{(n\times r_x)} matrix of observations of the functional covariate.
#' @param mY an \eqn{(n\times r_y)} matrix of observations of the functional response variable.
#' @param L number of elements of the B-spline basis vector \eqn{\theta(s)}.
#' @param M number of elements of the B-spline basis vector \eqn{\varphi(t)}.
#' @param group_weights a vector of length \eqn{G} containing group-specific weights. The default is square root of the group cardinality, see Bernardi et al. (2022).
#' @param var_weights a vector of length \eqn{ML} containing basis-specific weights. The default is a vector where
#' each entry is the reciprocal of the number of groups including that basis. See Bernardi et al. (2022) for details.
#' @param standardize.data logical. Should data be standardized?
#' @param splOrd the order \eqn{d} of the spline basis.
#' @param lambda either a regularization parameter or a vector of regularization parameters.
#' In this latter case the routine computes the whole path. If it is NULL values for lambda are provided by the routine.
#' @param lambda.min.ratio smallest value for lambda, as a fraction of the maximum lambda value. If \eqn{nr_y>LM}, the default is 0.0001, and if \eqn{nr_y<LM}, the default is 0.01.
#' @param nlambda the number of lambda values - default is 30.
#' @param overall.group logical. If it is TRUE, an overall group including all penalized covariates is added.
#' @param cv.fold the number of folds - default is 5.
#' @param control a list of control parameters for the ADMM algorithm. See ‘Details’.
#'
#' @return A named list containing \describe{
#' \item{sp.coefficients}{an \eqn{(M\times L)} solution matrix for the parameters \eqn{\Psi}, which corresponds to the minimum cross-validated MSE.}
#' \item{sp.fun}{an \eqn{(r_x\times r_y)} matrix providing the estimated functional coefficient for \eqn{\psi(t,s)} corresponding to the minimum cross-validated MSE.}
#' \item{lambda}{sequence of lambda.}
#' \item{lambda.min}{value of lambda that attains the cross-validated minimum mean squared error.}
#' \item{indi.min.mse}{index of the lambda sequence corresponding to lambda.min.}
#' \item{mse}{cross-validated mean squared error.}
#' \item{min.mse}{minimum value of the cross-validated MSE for the sequence of lambda.}
#' \item{mse.sd}{standard deviation of the cross-validated mean squared error.}
#' \item{convergence}{logical. 1 denotes achieved convergence.}
#' \item{elapsedTime}{elapsed time in seconds.}
#' \item{iternum}{number of iterations.}
#' }
#'
#' Iteration stops when both \code{r_norm} and \code{s_norm} values
#' become smaller than \code{eps_pri} and \code{eps_dual}, respectively.
#' @section Details: The control argument is a list that can supply any of the following components:\describe{
#' \item{adaptation}{logical. If it is TRUE, ADMM with adaptation is performed. The default value is TRUE. See Boyd et al. (2011) for details.}
#' \item{rho}{an augmented Lagrangian parameter. The default value is 1.}
#' \item{tau.ada}{an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 2. See Boyd et al. (2011) and Lin et al. (2022) for details.}
#' \item{mu.ada}{an adaptation parameter greater than one. Only needed if adaptation = TRUE. The default value is 10. See Boyd et al. (2011) and Lin et al. (2022) for details.}
#' \item{abstol}{absolute tolerance stopping criterion. The default value is sqrt(sqrt(.Machine$double.eps)).}
#' \item{reltol}{relative tolerance stopping criterion. The default value is sqrt(.Machine$double.eps).}
#' \item{maxit}{maximum number of iterations. The default value is 100.}
#' \item{print.out}{logical. If it is TRUE, a message about the procedure is printed. The default value is TRUE.}
#' }
#'
#' @examples
#'
#' ## generate sample data
#' set.seed(4321)
#' s <- seq(0, 1, length.out = 100)
#' t <- seq(0, 1, length.out = 100)
#' p1 <- 5
#' p2 <- 6
#' r <- 10
#' n <- 50
#'
#' beta_basis1 <- splines::bs(s, df = p1, intercept = TRUE) # first basis for beta
#' beta_basis2 <- splines::bs(s, df = p2, intercept = TRUE) # second basis for beta
#'
#' data_basis <- splines::bs(s, df = r, intercept = TRUE) # basis for X
#'
#' x_0 <- apply(matrix(rnorm(p1 * p2, sd = 1), p1, p2), 1,
#' fdaSP::softhresh, 1.5) # regression coefficients
#' x_fun <- beta_basis2 %*% x_0 %*% t(beta_basis1)
#'
#' fun_data <- matrix(rnorm(n*r), n, r) %*% t(data_basis)
#' b <- fun_data %*% x_fun + rnorm(n * 100, sd = sd(fun_data %*% x_fun )/3)
#'
#' ## set the hyper-parameters
#' maxit <- 1000
#' rho_adaptation <- FALSE
#' rho <- 0.01
#' reltol <- 1e-5
#' abstol <- 1e-5
#'
#' ## fit functional regression model
#' mod_cv <- f2fSP_cv(mY = b, mX = fun_data, L = p1, M = p2,
#' group_weights = NULL, var_weights = NULL,
#' standardize.data = FALSE, splOrd = 4,
#' lambda = NULL, nlambda = 30, cv.fold = 5,
#' lambda.min.ratio = NULL,
#' control = list("abstol" = abstol,
#' "reltol" = reltol,
#' "maxit" = maxit,
#' "adaptation" = rho_adaptation,
#' "rho" = rho,
#' "print.out" = FALSE))
#'
#' ### graphical presentation
#' plot(log(mod_cv$lambda), mod_cv$mse, type = "l", col = "blue", lwd = 2, bty = "n",
#' xlab = latex2exp::TeX("$\\log(\\lambda)$"), ylab = "Prediction Error",
#' ylim = range(mod_cv$mse - mod_cv$mse.sd, mod_cv$mse + mod_cv$mse.sd),
#' main = "Cross-validated Prediction Error")
#' fdaSP::confband(xV = log(mod_cv$lambda), yVmin = mod_cv$mse - mod_cv$mse.sd,
#' yVmax = mod_cv$mse + mod_cv$mse.sd)
#' abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]), col = "red", lwd = 1.0)
#'
#' ### comparison with oracle error
#' mod <- f2fSP(mY = b, mX = fun_data, L = p1, M = p2,
#' group_weights = NULL, var_weights = NULL,
#' standardize.data = FALSE, splOrd = 4,
#' lambda = NULL, nlambda = 30, lambda.min.ratio = NULL,
#' control = list("abstol" = abstol,
#' "reltol" = reltol,
#' "maxit" = maxit,
#' "adaptation" = rho_adaptation,
#' "rho" = rho,
#' "print.out" = FALSE))
#' err_mod <- apply(mod$sp.coef.path, 1, function(x) sum((x - x_0)^2))
#' plot(log(mod$lambda), err_mod, type = "l", col = "blue", lwd = 2,
#' xlab = latex2exp::TeX("$\\log(\\lambda)$"),
#' ylab = "Estimation Error", main = "True Estimation Error", bty = "n")
#' abline(v = log(mod$lambda[which(err_mod == min(err_mod))]), col = "red", lwd = 1.0)
#' abline(v = log(mod_cv$lambda[which(mod_cv$lambda == mod_cv$lambda.min)]),
#' col = "red", lwd = 1.0, lty = 2)
#'
#' @references
#' \insertRef{bernardi_etal.2022}{fdaSP}
#'
#' \insertRef{boyd_etal.2011}{fdaSP}
#'
#' \insertRef{jenatton_etal.2011}{fdaSP}
#'
#' \insertRef{lin_etal.2022}{fdaSP}
#'
#' @export
f2fSP_cv <- function(mY, mX, L, M, group_weights = NULL, var_weights = NULL, standardize.data = FALSE, splOrd = 4,
lambda = NULL, lambda.min.ratio = NULL, nlambda = NULL, cv.fold = 5, overall.group = FALSE, control = list()) {
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get dimensions
n <- dim(mX)[1] # number of observations
p <- dim(mX)[2]
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Create the B-spline basis functions
s <- seq(0, 1, length.out = p)
mH <- t(bs(s, df = M, intercept = TRUE))
mTheta <- t(bs(s, df = L, intercept = TRUE))
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Pre-processing
# data validity
if (!check_data_matrix(mX)) {
stop("* f2fSP_cv : input 'mX' is invalid data matrix.")
}
if (!check_data_matrix(mY)) {
stop("* f2fSP_cv : input 'mY' is invalid data matrix.")
}
mY <- as.matrix(mY)
# data size
if (n != dim(mY)[1]) {
stop("* f2fSP_cv : two inputs 'mX' and 'mY' have non-matching dimension.")
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Define response and design matrix
mY_B <- mY
mX_B <- tcrossprod(mX, mH)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Vectorisation form
X_ <- kronecker(t(mTheta), mX_B)
y_ <- matrix(ks::vec(mY_B, byrow = FALSE), ncol = 1)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Standardise response and design matrix
if (standardize.data == TRUE) {
res <- standardizemat(X_, y_)
X.std <- res$X.std
y.std <- res$y.std
mU <- res$mU
mV <- res$mV
} else {
X.std <- X_
y.std <- y_
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Pre-processing: lambda parameter (in case of a single lambda)
if (!is.null(lambda)) {
if (length(lambda) == 1) {
meps <- (.Machine$double.eps)
negsmall <- -meps
if (!check_param_constant(lambda, negsmall)) {
stop("* f2fSP_cv : reg. parameter 'lambda' is invalid.")
}
if (lambda < meps){
message("* f2fSP_cv : since 'lambda' is effectively zero, a least-squares solution is returned.")
xsol <- as.vector(aux_pinv(X_) %*% matrix(y_))
output <- list()
output$x <- xsol
return(output)
}
}
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# check for inputs
npar <- dim(X.std)[2]
con <- list(maxit = 100L,
abstol = sqrt(.Machine$double.eps),
reltol = sqrt(sqrt(.Machine$double.eps)),
adaptation = TRUE,
rho = 1,
tau.ada = 2,
mu.ada = 10,
par.init = NULL,
init.rnd = FALSE,
print.out = TRUE)
nmsC <- names(con)
con[(namc <- names(control))] <- control
if (length(noNms <- namc[!namc %in% nmsC])) {
warning("unknown names in control: ", paste(noNms, collapse = ", "))
}
# set default values (for inputs)
maxit <- con$maxit
abstol <- con$abstol
reltol <- con$reltol
adaptation <- con$adaptation
rho <- con$rho
tau.ada <- con$tau.ada
mu.ada <- con$mu.ada
par.init <- con$par.init
init.rnd <- con$init.rnd
print.out <- con$print.out
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Pre-processing
# data validity
if (!check_param_constant_multiple(c(abstol, reltol))) {
stop("* f2fSP_cv : tolerance level is invalid.")
}
if (!check_param_integer(maxit, 0.0)) {
stop("* f2fSP_cv : 'maxit' should be a positive integer.")
}
maxit = as.integer(maxit)
if (!check_param_constant(rho, 0.0)) {
stop("* f2fSP_cv : 'rho' should be a positive real number.")
}
if (!check_param_constant(mu.ada, 0.0)) {
stop("* f2fSP_cv : 'mu' should be a positive real number.")
}
if ((tau.ada < 1.0) || (tau.ada > 2.0)) {
warning("* f2fSP_cv : 'tau' value is suggested to be in [1,2].")
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Pre-processing: variable weights
check_weights(x = var_weights, n = dim(X_)[2], algname = "f2fSP", funname = "var_weights")
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get the groups of the overlap group LASSO penalty
if (overall.group == TRUE) {
out <- penfun(method = "ogl&1", p = M, q = L, splOrd = splOrd, regpars = NULL)
} else {
out <- penfun(method = "ogl", p = M, q = L, splOrd = splOrd, regpars = NULL)
}
GRmat <- out$grMat
G <- dim(GRmat)[1]
nG <- rowSums(GRmat)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Manage group & overall group weights
if (is.null(group_weights)) {
# Define the weights as in Yuan and Lin 2006, JRSSB
group_weights <- sqrt(diag(tcrossprod(GRmat)))
} else {
if (overall.group == TRUE) {
check_group_weights(x = group_weights, n = G, algname = "f2fSP", funname = "group_weights")
if (length(group_weights) == (G-1)) {
group_weights <- c(group_weights, sqrt(dim(GRmat)[2]))
}
} else {
check_weights(x = group_weights, n = G, algname = "f2fSP", funname = "group_weights")
}
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Manage variable weights
if (is.null(var_weights)) {
var_weights <- 1.0 / colSums(out$grMat)
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get the sequence of lambda
if (!is.null(nlambda) && is.null(lambda)) {
# get the smallest value of such that the regression
# coefficients estimated by the lasso are all equal to zero
lambda <- lm_lambdamax_OVGLASSO(y = y.std, X = X.std,
groups = NULL, GRmat = out$grMat, group_weights = group_weights, var_weights = var_weights,
lambda.min.ratio = lambda.min.ratio, maxl = nlambda)$lambda.seq
}
if (is.null(nlambda) && is.null(lambda)) {
# get the smallest value of such that the regression
# coefficients estimated by the lasso are all equal to zero
lambda <- lm_lambdamax_OVGLASSO(y = y.std, X = X.std,
groups = NULL, GRmat = out$grMat, group_weights = group_weights, var_weights = var_weights,
lambda.min.ratio = lambda.min.ratio, maxl = 30)$lambda.seq
}
if (!is.null(lambda)) {
nlambda <- length(lambda)
}
# other parameters
meps = (.Machine$double.eps)
negsmall = -meps
if (!check_param_constant(min(lambda), negsmall)) {
stop("* f2fSP_cv : reg. parameter 'lambda' is invalid.")
}
if (min(lambda) < meps) {
message("* f2fSP_cv : since 'lambda' is effectively zero, a least-squares solution is returned.")
xsol = as.vector(aux_pinv(mX) %*% matrix(mY))
output = list()
output$x = xsol
return(output)
}
if (!is.null(lambda)) {
nlambda <- length(lambda)
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get groups
ret.gr <- groups.cv(n = n, k = cv.fold)
# store Lasso regression for each fold
vMse_cv <- matrix(0.0, cv.fold, nlambda)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Initial time
startTime <- Sys.time()
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Run lasso
for (kt in 1:cv.fold) {
# run ADMM
# mX_ <- X.std[ret.gr$groups.cv[[kt]],]
# vY_ <- y.std[ret.gr$groups.cv[[kt]]]
data.gr <- f2freg_cv_manage_data(mY = mY, mX = mX, mTheta = mTheta, mH = mH,
ix.ins = ret.gr$groups.cv[[kt]],
ix.oos = ret.gr$groups.pred[[kt]], standardize.data = standardize.data)
mX_ <- data.gr$X_ins.std
vY_ <- data.gr$y_ins.std
ret <- .admm_ovglasso_fast(A = mX_, b = vY_, groups = out$grMat, group_weights = group_weights, var_weights = var_weights,
lambda = lambda, rho_adaptation = adaptation, rho = rho, tau = tau.ada, mu = mu.ada,
reltol = reltol, abstol = abstol, maxiter = maxit, ping = 0)
# Evaluate MSE
mSpRegP_ <- ret$coef.path
fit <- data.gr$X_oos.std %*% t(mSpRegP_)
n_ <- length(data.gr$y_oos.std)
mse <- apply(fit, 2, function(x) {sum((data.gr$y_oos.std - x)^2)/n_})
vMse_cv[kt,] <- mse
}
# get mean squared error
vMse <- apply(vMse_cv, 2, mean)
vSd <- apply(vMse_cv, 2, sd)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# system time
endTime <- Sys.time()
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# compute run time
eltime <- difftime(time1 = endTime, time2 = startTime, units = "secs")
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get lasso output
min.mse <- min(vMse)
indi.min.mse <- which(vMse == min.mse)
lambda.min <- lambda[indi.min.mse]
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# get estimate over the full sample
rho_ <- ret$rho[[indi.min.mse]]
ret <- .admm_ovglasso(A = X.std, b = y.std,
groups = out$grMat, group_weights = group_weights, var_weights = var_weights,
u = t(ret$U[indi.min.mse,]), z = t(ret$Z[indi.min.mse,]), lambda = lambda.min,
rho_adaptation = adaptation, rho = rho_[length(rho_)], tau = tau.ada, mu = mu.ada,
reltol = reltol, abstol = abstol, maxiter = maxit, ping = 0)
# ret <- .Call("admm_ovglasso",
# A = X.std, b = y.std,
# groups = out$grMat, group_weights = group_weights, var_weights = var_weights,
# u = t(ret$U[indi.min.mse,]), z = t(ret$Z[indi.min.mse,]), lambda = lambda.min,
# rho_adaptation = adaptation, rho = rho_[length(rho_)], tau = tau.ada, mu = mu.ada,
# reltol = reltol, abstol = abstol, maxiter = maxit, ping = 0)
# Store output: full sample estimate
niter <- ret$niter
if (niter < maxit) {
converged <- TRUE
} else {
converged <- FALSE
}
vSpRegP <- ret$x
dConv <- ifelse(converged == TRUE, 1, 0)
nIterN <- ret$niter
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Retrieve estimated parameters
if (standardize.data == TRUE) {
vSpRegP_ <- matrix(solve(mU) %*% vSpRegP %*% mV, nrow = npar, ncol = 1)
} else {
vSpRegP_ <- matrix(vSpRegP, nrow = npar, ncol = 1)
}
mSpRegP_ <- matrix(vSpRegP_, nrow = M, ncol = L, byrow = FALSE)
# get the estimated functions
# sp.fun <- t(mTheta) %*% mSpRegP_ %*% mH
sp.fun <- t(mH) %*% mSpRegP_ %*% mTheta
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Print to screen
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
if (print.out == TRUE) {
cat("\n\n\n")
cat("function to function regression model with overlap group-LASSO penalty, Cross Validation\n")
cat("Alternating direction method of multipliers\n")
cat("running time (for ", reltol, " relative error):",
eltime, "seconds \n\n\n")
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get output
res.names <- c("sp.coefficients",
"sp.fun",
"mse",
"mse.sd",
"min.mse",
"lambda",
"lambda.min",
"convergence",
"elapsedTime",
"iternum",
"indi.min.mse")
res <- vector(mode = "list", length = length(res.names))
names(res) <- res.names
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get output
ret <- NULL
ret$sp.coefficients <- mSpRegP_
ret$sp.fun <- sp.fun
ret$mse <- vMse
ret$mse.sd <- vSd
ret$min.mse <- min.mse
ret$lambda <- lambda
ret$lambda.min <- lambda.min
ret$convergence <- dConv
ret$elapsedTime <- eltime
ret$iternum <- nIterN
ret$indi.min.mse <- indi.min.mse
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Return output
return(ret)
}
f2freg_cv_manage_data <- function(mY, mX, mTheta, mH, ix.ins = NULL, ix.oos = NULL, standardize.data = TRUE) {
if (!is.null(ix.ins)) {
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Define the in-sample and out-of-sample data
mY_ins <- mY[ix.ins,]
mY_oos <- mY[ix.oos,]
mX_ins <- mX[ix.ins,]
mX_oos <- mX[ix.oos,]
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Define response and design matrix
mY_B_ins <- mY_ins
mY_B_oos <- mY_oos
mX_B_ins <- tcrossprod(mX_ins, mH)
mX_B_oos <- tcrossprod(mX_oos, mH)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Vectorisation form
X_ins_ <- kronecker(t(mTheta), mX_B_ins)
X_oos_ <- kronecker(t(mTheta), mX_B_oos)
y_ins_ <- matrix(ks::vec(mY_B_ins, byrow = FALSE), ncol = 1)
y_oos_ <- matrix(ks::vec(mY_B_oos, byrow = FALSE), ncol = 1)
X_ <- rbind(X_ins_, X_oos_)
y_ <- as.matrix(c(y_ins_, y_oos_))
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Standardise response and design matrix
if (standardize.data == TRUE) {
res <- standardizemat(X_, y_)
mU <- res$mU
mV <- res$mV
mx <- apply(X_, 2, mean)
my <- mean(y_)
y_ins.std <- (y_ins_ - my) %*% solve(mV)
y_oos.std <- (y_oos_ - my) %*% solve(mV)
X_ins.std <- t(apply(X_ins_, 1, function(x) {(x-mx)})) %*% solve(mU)
X_oos.std <- t(apply(X_oos_, 1, function(x) {(x-mx)})) %*% solve(mU)
} else {
X_ins.std <- X_ins_
y_ins.std <- y_ins_
X_oos.std <- X_oos_
y_oos.std <- y_oos_
}
} else {
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Define response and design matrix
mY_B <- mY
mX_B <- tcrossprod(mX, mH)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Vectorisation form
X_ <- kronecker(t(mTheta), mX_B)
y_ <- matrix(ks::vec(mY_B, byrow = FALSE), ncol = 1)
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Standardise response and design matrix
if (standardize.data == TRUE) {
res <- standardizemat(X_, y_)
X.std <- res$X.std
y.std <- res$y.std
} else {
X.std <- X_
y.std <- y_
}
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Get output
res <- NULL
if (!is.null(ix.ins)) {
res$X_ins.std <- X_ins.std
res$y_ins.std <- y_ins.std
res$X_oos.std <- X_oos.std
res$y_oos.std <- y_oos.std
} else {
res$X.std <- X.std
res$y.std <- y.std
}
# ::::::::::::::::::::::::::::::::::::::::::::::::::::::::
# Return output
return(res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.