Sleeper: Basics

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

options(dplyr.summarise.inform = FALSE,
        rmarkdown.html_vignette.check_title = FALSE)

eval <- TRUE

tryCatch(expr = {

  download.file("https://github.com/ffverse/ffscrapr-tests/archive/1.4.7.zip","f.zip")
  unzip('f.zip', exdir = ".")

  httptest::.mockPaths(new = "ffscrapr-tests-1.4.7")},
  warning = function(e) eval <<- FALSE,
  error = function(e) eval <<- FALSE)

httptest::use_mock_api()

In this vignette, I'll walk through how to get started with a basic dynasty value analysis on Sleeper.

We'll start by loading the packages:

  library(ffscrapr)
  library(dplyr)
  library(tidyr)

In Sleeper, unlike in other platforms, it's very unlikely that you'll remember the league ID - both because most people use the mobile app, and because it happens to be an 18 digit number! It's a little more natural to start analyses from the username, so let's start there!

solarpool_leagues <- sleeper_userleagues("solarpool",2020)

head(solarpool_leagues)

Let's pull the JML league ID from here for analysis, and set up a Sleeper connection object.

jml_id <- solarpool_leagues %>% 
  filter(league_name == "The JanMichaelLarkin Dynasty League") %>% 
  pull(league_id)

jml_id # For quick analyses, I'm not above copy-pasting the league ID instead!

jml <- sleeper_connect(season = 2020, league_id = jml_id)

jml

I've done this with the sleeper_connect() function, although you can also do this from the ff_connect() call - they are equivalent. Most if not all of the remaining functions after this point are prefixed with "ff_".

Cool! Let's have a quick look at what this league is like.

jml_summary <- ff_league(jml)

str(jml_summary)

Okay, so it's the JanMichaelLarkin Dynasty League, it's a 1QB league with 12 teams, half ppr scoring, and rosters about 300 players.

Let's grab the rosters now.

jml_rosters <- ff_rosters(jml)

head(jml_rosters)

Values

Cool! Let's pull in some additional context by adding DynastyProcess player values.

player_values <- dp_values("values-players.csv")

# The values are stored by fantasypros ID since that's where the data comes from. 
# To join it to our rosters, we'll need playerID mappings.

player_ids <- dp_playerids() %>% 
  select(sleeper_id,fantasypros_id)

player_values <- player_values %>% 
  left_join(player_ids, by = c("fp_id" = "fantasypros_id")) %>% 
  select(sleeper_id,ecr_1qb,ecr_pos,value_1qb)

# Drilling down to just 1QB values and IDs, we'll be joining it onto rosters and don't need the extra stuff

jml_values <- jml_rosters %>% 
  left_join(player_values, by = c("player_id"="sleeper_id")) %>% 
  arrange(franchise_id,desc(value_1qb))

head(jml_values)

Let's do some team summaries now!

value_summary <- jml_values %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(total_value = sum(value_1qb,na.rm = TRUE)) %>%
  ungroup() %>% 
  group_by(franchise_id,franchise_name) %>% 
  mutate(team_value = sum(total_value)) %>% 
  ungroup() %>% 
  pivot_wider(names_from = pos, values_from = total_value) %>% 
  arrange(desc(team_value))

value_summary

So with that, we've got a team summary of values! I like applying some context, so let's turn these into percentages - this helps normalise it to your league environment.

value_summary_pct <- value_summary %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),~.x/sum(.x)) %>% 
  mutate_at(c("team_value","QB","RB","WR","TE"),round, 3)

value_summary_pct

Armed with a value summary like this, we can see team strengths and weaknesses pretty quickly, and figure out who might be interested in your positional surpluses and who might have a surplus at a position you want to look at.

Age

Another question you might ask: what is the average age of any given team?

I like looking at average age by position, but weighted by dynasty value. This helps give a better idea of age for each team - including who might be looking to offload an older veteran!

age_summary <- jml_values %>% 
  group_by(franchise_id,pos) %>% 
  mutate(position_value = sum(value_1qb,na.rm=TRUE)) %>% 
  ungroup() %>% 
  mutate(weighted_age = age*value_1qb/position_value,
         weighted_age = round(weighted_age, 1)) %>% 
  group_by(franchise_id,franchise_name,pos) %>% 
  summarise(count = n(),
            age = sum(weighted_age,na.rm = TRUE)) %>% 
  pivot_wider(names_from = pos,
              values_from = c(age,count))

age_summary

Next steps

In this vignette, I've used ~three functions: ff_connect, ff_league, and ff_rosters. Now that you've gotten this far, why not check out some of the other possibilities?

httptest::stop_mocking()

unlink(c("ffscrapr-tests-1.4.7","f.zip"), recursive = TRUE, force = TRUE)


Try the ffscrapr package in your browser

Any scripts or data that you put into this service are public.

ffscrapr documentation built on Feb. 16, 2023, 10:55 p.m.