Nothing
#' Interface to fit orthus models
#'
#' This function is largely a more user friendly wrapper around
#' \code{\link{optimPibbleCollapsed}} and
#' \code{\link{uncollapsePibble}} for fitting orthus models.
#' See details for model specification.
#' Notation: \code{N} is number of samples, \code{P} is the number of dimensions
#' of observations in the second dataset,
#' \code{D} is number of multinomial categories, \code{Q} is number
#' of covariates, \code{iter} is the number of samples of \code{eta} (e.g.,
#' the parameter \code{n_samples} in the function
#' \code{\link{optimPibbleCollapsed}})
#' @param Y D x N matrix of counts (if NULL uses priors only)
#' @param Z P x N matrix of counts (if NULL uses priors only - must be present/absent
#' if Y is present/absent)
#' @param X Q x N matrix of covariates (design matrix) (if NULL uses priors only, must
#' be present to sample Eta)
#' @param upsilon dof for inverse wishart prior (numeric must be > D)
#' (default: D+3)
#' @param Theta (D-1+P) x Q matrix of prior mean for regression parameters
#' (default: matrix(0, D-1+P, Q))
#' @param Gamma QxQ prior covariance matrix
#' (default: diag(Q))
#' @param Xi (D-1+P)x(D-1+P) prior covariance matrix
#' (default: ALR transform of diag(1)*(upsilon-D)/2 - this is
#' essentially iid on "base scale" using Aitchison terminology)
#' @param init (D-1) x Q initialization for Eta for optimization
#' @param pars character vector of posterior parameters to return
#' @param ... arguments passed to \code{\link{optimPibbleCollapsed}} and
#' \code{\link{uncollapsePibble}}
#'
#' @details the full model is given by:
#' \deqn{Y_j \sim Multinomial(\pi_j)}{Y_j \sim Multinomial(Pi_j)}
#' \deqn{\pi_j = \Phi^{-1}(\eta_j)}{Pi_j = Phi^(-1)(Eta_j)}
#' \deqn{cbind(\eta, Z) \sim MN_{D-1+P \times N}(\Lambda X, \Sigma, I_N)}{cbind(Eta, Z) \sim MN_{D-1+P x N}(Lambda*X, Sigma, I_N)}
#' \deqn{\Lambda \sim MN_{D-1+P \times Q}(\Theta, \Sigma, \Gamma)}{Lambda \sim MN_{D-1+P x Q}(Theta, Sigma, Gamma)}
#' \deqn{\Sigma \sim InvWish(\upsilon, \Xi)}{Sigma \sim InvWish(upsilon, Xi)}
#' Where \eqn{\Gamma}{Gamma} is a Q x Q covariance matrix, and \eqn{\Phi^{-1}}{Phi^(-1)} is
#' ALRInv_D transform.
#' That is, the orthus model models the latent multinomial log-ratios (Eta) and
#' the observations of the second dataset jointly as a linear model. This allows
#' Sigma to also describe the covariation between the two datasets.
#'
#' Default behavior is to use MAP estimate for uncollaping the LTP
#' model if laplace approximation is not preformed.
#' @return an object of class pibblefit
#' @md
#' @name orthus_fit
#' @examples
#' sim <- orthus_sim()
#' fit <- orthus(sim$Y, sim$Z, sim$X)
#' @seealso \code{\link{fido_transforms}} provide convenience methods for
#' transforming the representation of pibblefit objects (e.g., conversion to
#' proportions, alr, clr, or ilr coordinates.)
#'
#' \code{\link{access_dims}} provides convenience methods for accessing
#' dimensions of pibblefit object
#'
# Generic functions including \code{\link[=summary.pibblefit]{summary}},
# \code{\link[=print.pibblefit]{print}},
# \code{\link[=coef.pibblefit]{coef}},
# \code{\link[=as.list.pibblefit]{as.list}},
# \code{\link[=predict.pibblefit]{predict}},
# \code{\link[=model.matrix.pibblefit]{model.matrix}},
# \code{\link[=name.pibblefit]{name}}, and
# \code{\link[=sample_prior.pibblefit]{sample_prior}}
# \code{\link{name_dims}}
#
# Plotting functions provided by \code{\link[=plot.pibblefit]{plot}}
# and \code{\link[=ppc.pibblefit]{ppc}} (posterior predictive checks)
NULL
#' @rdname orthus_fit
#' @export
#' @references JD Silverman K Roche, ZC Holmes, LA David, S Mukherjee.
#' Bayesian Multinomial Logistic Normal Models through Marginally Latent Matrix-T Processes.
#' 2019, arXiv e-prints, arXiv:1903.11695
orthus <- function(Y=NULL, Z=NULL, X=NULL, upsilon=NULL, Theta=NULL, Gamma=NULL, Xi=NULL,
init=NULL,
pars=c("Eta", "Lambda", "Sigma"),
...){
args <- list(...)
N <- try_set_dims(c(ncol(Y), ncol(X), args[["N"]]))
P <- try_set_dims(c(nrow(Z), args[["P"]]))
D <- try_set_dims(c(nrow(Y), nrow(Theta)+1-P, nrow(Xi)+1-P, ncol(Xi)+1-P, args[["D"]]))
Q <- try_set_dims(c(nrow(X), ncol(Theta), nrow(Gamma), ncol(Gamma), args[["Q"]]))
if (any(c(N, D, Q, P) <=0)) stop("N, D, and Q must all be greater than 0 (D must be greater than 1)")
if (D <= 1) stop("D must be greater than 1")
## construct default values ##
# for priors
if (is.null(upsilon)) upsilon <- D+P+3 # default is minimal information
# but with defined mean
if (is.null(Theta)) Theta <- matrix(0, D-1+P, Q) # default is mean zero
if (is.null(Gamma)) Gamma <- diag(Q) # default is iid
if (is.null(Xi)) {
## default is iid on base scale for multinomial parameters and independent for Z dims
Xi <- diag(D-1+P)
Xi[1:(D-1), 1:(D-1)] <- matrix(0.5, D-1, D-1)
diag(Xi) <- 1
Xi <- Xi * (upsilon-D-P) # make inverse wishart mean Xi as in previous lines
}
# check dimensions
check_dims(upsilon, 1, "upsilon")
check_dims(Theta, c(D-1+P, Q), "Theta")
check_dims(Gamma, c(Q, Q), "Gamma")
check_dims(Xi, c(D-1+P, D-1+P), "Xi")
# set number of iterations
n_samples <- args_null("n_samples", args, 2000)
use_names <- args_null("use_names", args, TRUE)
# This is the signal to sample the prior only
if (!(is.null(Y)==is.null(Z))) stop("Y and Z must either both be present or absent")
if (is.null(Y)){
if (("Eta" %in% pars) & (is.null(X))) stop("X must be given if Eta is to be sampled")
stop("sorry but sample_prior.orthusfit is not yet implemented")
# create orthusfit object and pass to sample_prior then return
out <- orthusfit(N=N, D=D, Q=Q, P=P, coord_system="alr", alr_base=D,
upsilon=upsilon, Theta=Theta,
Gamma=Gamma, Xi=Xi,
# names_categories=rownames(Y), # these won't be present...
# names_samples=colnames(Y),
# names_covariates=colnames(X),
X=X)
out <- sample_prior(out, n_samples=n_samples, pars=pars, use_names=use_names)
return(out)
} else {
if (is.null(X)) stop("X must be given to fit model")
if(is.null(init)) init <- random_pibble_init(Y) # initialize init should
# work for orthus too
}
# for optimization and laplace approximation
calcGradHess <- args_null("calcGradHess", args, TRUE)
b1 <- args_null("b1", args, 0.9)
b2 <- args_null("b2", args, 0.99)
step_size <- args_null("step_size", args, 0.003)
epsilon <- args_null("epsilon", args, 10e-7)
eps_f <- args_null("eps_f", args, 1e-10)
eps_g <- args_null("eps_g", args, 1e-4)
max_iter <- args_null("max_iter", args, 10000)
verbose <- args_null("verbose", args, FALSE)
verbose_rate <- args_null("verbose_rate", args, 10)
decomp_method <- args_null("decomp_method", args, "cholesky")
eigvalthresh <- args_null("eigvalthresh", args, 0)
jitter <- args_null("jitter", args, 0)
multDirichletBoot <- args_null("multDirichletBoot", args, -1.0)
optim_method <- args_null("optim_method", args, "lbfgs")
useSylv <- args_null("useSylv", args, TRUE)
ncores <- args_null("ncores", args, -1)
seed <- args_null("seed", args, sample(1:2^15, 1))
## precomputation ##
# The following is a trick that allows pibble to be used to fit orthus models
# it relies on collapsing the orthus model to a pibble model using the
# conditional form of the matrix-t distribution.
A <- diag(N) + t(X) %*% Gamma %*% X
K <- Xi
AInv <- chol2inv(chol(A))
one <- 1:(D-1)
two <- D:(D-1+P)
B <- Theta%*%X
E2 <- Z - B[two,]
K22Inv <- chol2inv(chol(K[two,two]))
upsilon.star <- upsilon+P
K.star <- K[one,one] - K[one,two] %*% K22Inv %*% K[two,one]
B.star <- B[one,] + K[one,two] %*% K22Inv %*% E2
A.star <- A%*%(diag(N) + AInv %*% t(E2) %*% K22Inv %*% E2)
# Free up some memory
rm(A, K, AInv, E2, K22Inv)
if (verbose) cat("Inverting (star) Priors\n")
K.starInv <- chol2inv(chol(K.star))
A.starInv <- chol2inv(chol(A.star))
if (verbose) cat("Starting Optimization\n")
## fit collapsed model ##
fitc <- optimPibbleCollapsed(Y, upsilon.star, B.star, K.starInv, A.starInv, init, n_samples,
calcGradHess, b1, b2, step_size, epsilon, eps_f,
eps_g, max_iter, verbose, verbose_rate,
decomp_method, optim_method, eigvalthresh,
jitter, multDirichletBoot,
useSylv, ncores, seed)
timerc <- parse_timer_seconds(fitc$Timer)
# if n_samples=0 or if hessian fails, then use MAP eta estimate for
# uncollapsing and unless otherwise specified against, use only the
# posterior mean for Lambda and Sigma
if (is.null(fitc$Samples)) {
fitc$Samples <- add_array_dim(fitc$Pars, 3)
ret_mean <- args_null("ret_mean", args, TRUE)
if (ret_mean && n_samples>0){
warning("Laplace Approximation Failed, using MAP estimate of eta",
" to obtain Posterior mean of Lambda and Sigma",
" (i.e., not sampling from posterior distribution of Lambda or Sigma)")
}
if (!ret_mean && n_samples > 0){
warning("Laplace Approximation Failed, using MAP estimate of eta",
"but ret_mean was manually specified as FALSE so sampling",
"from posterior of Lambda and Sigma rather than using posterior mean")
}
} else {
ret_mean <- args_null("ret_mean", args, FALSE)
}
seed <- seed + sample(1:2^15, 1)
## uncollapse collapsed model ##
samples <- array(0, dim=c(D-1+P, N, dim(fitc$Samples)[3]))
samples[one,,] <- fitc$Samples
for (i in 1:dim(fitc$Samples)[3]) samples[two,,i] <- Z
fitu <- uncollapsePibble(samples, X, Theta, Gamma, Xi, upsilon,
ret_mean=ret_mean, ncores=ncores, seed=seed)
timeru <- parse_timer_seconds(fitu$Timer)
timer <- c(timerc, timeru)
timer <- timer[which(names(timer)!="Overall")]
timer <- c(timer,
"Overall" = unname(timerc["Overall"]) + unname(timeru["Overall"]),
"Uncollapse_Overall" = timeru["Overall"])
# Marginal Likelihood Computation
# not yet implemented for orthus - below is code for pibble
#d <- D^2 + N*D + D*Q
#logMarginalLikelihood <- fitc$LogLik+d/2*log(2*pi)+.5*fitc$logInvNegHessDet-d/2*log(N)
## pretty output ##
out <- list()
if ("Eta" %in% pars){
out[["Eta"]] <- fitc$Samples
}
if ("Lambda" %in% pars){
out[["Lambda"]] <- fitu$Lambda
}
if ("Sigma" %in% pars){
out[["Sigma"]] <- fitu$Sigma
}
# By default just returns all other parameters
out$N <- N
out$Q <- Q
out$P <- P
out$D <- D
out$Y <- Y
out$Z <- Z
out$upsilon <- upsilon
out$Theta <- Theta
out$X <- X
out$Xi <- Xi
out$Gamma <- Gamma
out$init <- init
out$iter <- dim(fitc$Samples)[3]
# for other methods
out$names_categories <- rownames(Y)
out$names_samples <- colnames(Y)
out$names_covariates <- rownames(X)
out$names_Zdimensions <- rownames(Z)
out$coord_system <- "alr"
out$alr_base <- D
out$summary <- NULL
out$Timer <- timer
#out$logMarginalLikelihood <- logMarginalLikelihood
attr(out, "class") <- c("orthusfit")
# add names if present
#if (use_names) out <- name(out)
verify(out) # verify the pibblefit object
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.