R/arfima.R

Defines functions fitted.ARFIMA forecast.fracdiff arfima unfracdiff undo.na.ends na.ends

Documented in arfima fitted.ARFIMA forecast.fracdiff

# Remove missing values from end points
na.ends <- function(x) {
  tspx <- tsp(x)
  # Strip initial and final missing values
  nonmiss <- (1:length(x))[!is.na(x)]
  if (length(nonmiss) == 0) {
    stop("No non-missing data")
  }
  j <- nonmiss[1]
  k <- nonmiss[length(nonmiss)]
  x <- x[j:k]
  if (!is.null(tspx)) {
    x <- ts(x, start = tspx[1] + (j - 1) / tspx[3], frequency = tspx[3])
  }
  return(x)
}

# Add back missing values at ends
# x is original series. y is the series with NAs removed at ends.
# returns y with the nas put back at beginning but not end.
undo.na.ends <- function(x, y) {
  n <- length(x)
  nonmiss <- (1:length(x))[!is.na(x)]
  j <- nonmiss[1]
  k <- nonmiss[length(nonmiss)]
  if (j > 1) {
    y <- c(rep(NA, j - 1), y)
  }
  if (k < n) {
    y <- c(y, rep(NA, n - k))
  }
  tspx <- tsp(x)
  if (!is.null(tspx)) {
    tsp(y) <- tsp(x)
  }
  return(y)
}

## Undifference
unfracdiff <- function(x, y, n, h, d) {
  bin.c <- (-1) ^ (0:(n + h)) * choose(d, (0:(n + h)))
  b <- numeric(n)
  xnew <- LHS <- numeric(h)
  RHS <- cumsum(y)
  bs <- cumsum(bin.c[1:h])
  b <- bin.c[(1:n) + 1]
  xnew[1] <- RHS[1] <- y[1] - sum(b * rev(x))
  if (h > 1) {
    for (k in 2:h)
    {
      b <- b + bin.c[(1:n) + k]
      RHS[k] <- RHS[k] - sum(b * rev(x))
      LHS[k] <- sum(rev(xnew[1:(k - 1)]) * bs[2:k])
      xnew[k] <- RHS[k] - LHS[k]
    }
  }
  tspx <- tsp(x)
  if (is.null(tspx)) {
    tspx <- c(1, length(x), 1)
  }
  return(ts(xnew, frequency = tspx[3], start = tspx[2] + 1 / tspx[3]))
}

## Automatic ARFIMA modelling
## Will return Arima object if d < 0.01 to prevent estimation problems

#' Fit a fractionally differenced ARFIMA model
#'
#' An ARFIMA(p,d,q) model is selected and estimated automatically using the
#' Hyndman-Khandakar (2008) algorithm to select p and q and the Haslett and
#' Raftery (1989) algorithm to estimate the parameters including d.
#'
#' This function combines \code{\link[fracdiff]{fracdiff}} and
#' \code{\link{auto.arima}} to automatically select and estimate an ARFIMA
#' model.  The fractional differencing parameter is chosen first assuming an
#' ARFIMA(2,d,0) model. Then the data are fractionally differenced using the
#' estimated d and an ARMA model is selected for the resulting time series
#' using \code{\link{auto.arima}}. Finally, the full ARFIMA(p,d,q) model is
#' re-estimated using \code{\link[fracdiff]{fracdiff}}. If \code{estim=="mle"},
#' the ARMA coefficients are refined using \code{\link[stats]{arima}}.
#'
#' @param y a univariate time series (numeric vector).
#' @param drange Allowable values of d to be considered. Default of
#' \code{c(0,0.5)} ensures a stationary model is returned.
#' @param estim If \code{estim=="ls"}, then the ARMA parameters are calculated
#' using the Haslett-Raftery algorithm. If \code{estim=="mle"}, then the ARMA
#' parameters are calculated using full MLE via the \code{\link[stats]{arima}}
#' function.
#' @param model Output from a previous call to \code{arfima}. If model is
#' passed, this same model is fitted to y without re-estimating any parameters.
#' @param x Deprecated. Included for backwards compatibility.
#' @param \dots Other arguments passed to \code{\link{auto.arima}} when
#' selecting p and q.
#' @inheritParams forecast.ts
#'
#' @return A list object of S3 class \code{"fracdiff"}, which is described in
#' the \code{\link[fracdiff]{fracdiff}} documentation. A few additional objects
#' are added to the list including \code{x} (the original time series), and the
#' \code{residuals} and \code{fitted} values.
#'
#' @export
#'
#' @author Rob J Hyndman and Farah Yasmeen
#' @seealso \code{\link[fracdiff]{fracdiff}}, \code{\link{auto.arima}},
#' \code{\link{forecast.fracdiff}}.
#' @references J. Haslett and A. E. Raftery (1989) Space-time Modelling with
#' Long-memory Dependence: Assessing Ireland's Wind Power Resource (with
#' discussion); \emph{Applied Statistics} \bold{38}, 1-50.
#'
#' Hyndman, R.J. and Khandakar, Y. (2008) "Automatic time series forecasting:
#' The forecast package for R", \emph{Journal of Statistical Software},
#' \bold{26}(3).
#' @keywords ts
#' @examples
#'
#' library(fracdiff)
#' x <- fracdiff.sim( 100, ma=-.4, d=.3)$series
#' fit <- arfima(x)
#' tsdisplay(residuals(fit))
#'
arfima <- function(y, drange = c(0, 0.5), estim = c("mle", "ls"), model = NULL, lambda = NULL, biasadj = FALSE, x=y, ...) {
  estim <- match.arg(estim)
  # 	require(fracdiff)
  seriesname <- deparse(substitute(y))

  orig.x <- x
  if (!is.null(lambda)) {
    x <- BoxCox(x, lambda)
    lambda <- attr(x, "lambda")
  }

  # Re-fit arfima model
  if (!is.null(model)) {
    fit <- model
    fit$residuals <- fit$fitted <- fit$lambda <- NULL
    if (!is.null(lambda)) {
      fit$lambda <- lambda # Required for residuals.fracdiff()
    }
  }
  # Estimate model
  else {
    # Strip initial and final missing values
    xx <- na.ends(x)

    # Remove mean
    meanx <- mean(xx)
    xx <- xx - meanx

    # Choose differencing parameter with AR(2) proxy to handle correlations
    suppressWarnings(fit <- fracdiff::fracdiff(xx, nar = 2, drange = drange))

    # Choose p and q
    d <- fit$d
    y <- fracdiff::diffseries(xx, d = d)
    fit <- auto.arima(y, max.P = 0, max.Q = 0, stationary = TRUE, ...)

    # Refit model using fracdiff
    suppressWarnings(fit <- fracdiff::fracdiff(xx, nar = fit$arma[1], nma = fit$arma[2], drange = drange))

    # Refine parameters with MLE
    if (estim == "mle") {
      y <- fracdiff::diffseries(xx, d = fit$d)
      p <- length(fit$ar)
      q <- length(fit$ma)
      fit2 <- try(Arima(y, order = c(p, 0, q), include.mean = FALSE))
      if (is.element("try-error", class(fit2))) {
        fit2 <- try(Arima(y, order = c(p, 0, q), include.mean = FALSE, method = "ML"))
      }
      if (!is.element("try-error", class(fit2))) {
        if (p > 0) {
          fit$ar <- fit2$coef[1:p]
        }
        if (q > 0) {
          fit$ma <- -fit2$coef[p + (1:q)]
        }
        fit$residuals <- fit2$residuals
      }
      else {
        warning("MLE estimation failed. Returning LS estimates")
      }
    }
  }

  # Add things to model that will be needed by forecast.fracdiff
  fit$x <- orig.x
  fit$residuals <- undo.na.ends(x, residuals(fit))
  fit$fitted <- x - fit$residuals
  if (!is.null(lambda)) {
    fit$fitted <- InvBoxCox(fit$fitted, lambda, biasadj, var(fit$residuals))
    attr(lambda, "biasadj") <- biasadj
  }
  fit$lambda <- lambda
  fit$call <- match.call()
  fit$series <- seriesname
  fit <- structure(fit, class = c("ARFIMA","fracdiff"))
  # fit$call$data <- data.frame(x=x) #Consider replacing fit$call with match.call for consistency and tidyness
  return(fit)
}

# Forecast the output of fracdiff() or arfima()

#' @rdname forecast.Arima
#' @export
forecast.fracdiff <- function(object, h=10, level=c(80, 95), fan=FALSE, lambda=object$lambda, biasadj=NULL, ...) {
  # Extract data
  x <- object$x <- getResponse(object)
  if (is.null(x)) {
    stop("Unable to find original time series")
  }

  if (!is.null(lambda)) {
    x <- BoxCox(x, lambda)
    lambda <- attr(x, "lambda")
  }

  xx <- na.ends(x)
  n <- length(xx)

  meanx <- mean(xx)
  xx <- xx - meanx

  # Construct ARMA part of model and forecast with it
  y <- fracdiff::diffseries(xx, d = object$d)
  fit <- Arima(y, order = c(length(object$ar), 0, length(object$ma)), include.mean = FALSE, fixed = c(object$ar, -object$ma))
  fcast.y <- forecast(fit, h = h, level = level)

  # Undifference
  fcast.x <- unfracdiff(xx, fcast.y$mean, n, h, object$d)

  # Binomial coefficient for expansion of d
  bin.c <- (-1) ^ (0:(n + h)) * choose(object$d, (0:(n + h)))

  # Cumulative forecasts of y and forecast of y
  # b <- numeric(n)
  # fcast.x <- LHS <- numeric(h)
  # RHS <- cumsum(fcast.y$mean)
  # bs <- cumsum(bin.c[1:h])
  # b <- bin.c[(1:n)+1]
  # fcast.x[1] <- RHS[1] <- fcast.y$mean[1] - sum(b*rev(xx))
  # if(h>1)
  # {
  # for (k in 2:h)
  # {
  # b <- b + bin.c[(1:n)+k]
  # RHS[k] <- RHS[k] - sum(b*rev(xx))
  # LHS[k] <- sum(rev(fcast.x[1:(k-1)]) * bs[2:k])
  # fcast.x[k] <- RHS[k] - LHS[k]
  # }
  # }

  # Extract stuff from ARMA model
  p <- fit$arma[1]
  q <- fit$arma[2]
  phi <- theta <- numeric(h)
  if (p > 0) {
    phi[1:p] <- fit$coef[1:p]
  }
  if (q > 0) {
    theta[1:q] <- fit$coef[p + (1:q)]
  }

  # Calculate psi weights
  new.phi <- psi <- numeric(h)
  psi[1] <- new.phi[1] <- 1
  if (h > 1) {
    new.phi[2:h] <- -bin.c[2:h]
    for (i in 2:h)
    {
      if (p > 0) {
        new.phi[i] <- sum(phi[1:(i - 1)] * bin.c[(i - 1):1]) - bin.c[i]
      }
      psi[i] <- sum(new.phi[2:i] * rev(psi[1:(i - 1)])) + theta[i - 1]
    }
  }

  # Compute forecast variances
  fse <- sqrt(cumsum(psi ^ 2) * fit$sigma2)

  # Compute prediction intervals
  if (fan) {
    level <- seq(51, 99, by = 3)
  } else {
    if (min(level) > 0 && max(level) < 1) {
      level <- 100 * level
    } else if (min(level) < 0 || max(level) > 99.99) {
      stop("Confidence limit out of range")
    }
  }
  nint <- length(level)
  upper <- lower <- matrix(NA, ncol = nint, nrow = h)
  for (i in 1:nint)
  {
    qq <- qnorm(0.5 * (1 + level[i] / 100))
    lower[, i] <- fcast.x - qq * fse
    upper[, i] <- fcast.x + qq * fse
  }
  colnames(lower) <- colnames(upper) <- paste(level, "%", sep = "")

  res <- undo.na.ends(x, residuals(fit))
  fits <- x - res
  data.tsp <- tsp(x)
  if (is.null(data.tsp)) {
    data.tsp <- c(1, length(x), 1)
  }
  mean.fcast <- ts(fcast.x + meanx, frequency = data.tsp[3], start = data.tsp[2] + 1 / data.tsp[3])
  lower <- ts(lower + meanx, frequency = data.tsp[3], start = data.tsp[2] + 1 / data.tsp[3])
  upper <- ts(upper + meanx, frequency = data.tsp[3], start = data.tsp[2] + 1 / data.tsp[3])
  method <- paste("ARFIMA(", p, ",", round(object$d, 2), ",", q, ")", sep = "")

  if (!is.null(lambda)) {
    x <- InvBoxCox(x, lambda)
    fits <- InvBoxCox(fits, lambda)
    mean.fcast <- InvBoxCox(mean.fcast, lambda, biasadj, list(level = level, upper = upper, lower = lower))
    lower <- InvBoxCox(lower, lambda)
    upper <- InvBoxCox(upper, lambda)
  }

  seriesname <- if (!is.null(object$series)) {
    object$series
  }
  else {
    deparse(object$call$x)
  }

  return(structure(list(
    x = x, mean = mean.fcast, upper = upper, lower = lower,
    level = level, method = method, model = object, series = seriesname,
    residuals = res, fitted = fits
  ), class = "forecast"))
}

# Fitted values from arfima()

#' @rdname fitted.Arima
#' @export
fitted.ARFIMA <- function(object, h = 1, ...) {
  if (!is.null(object$fitted)) { # Object produced by arfima()
    if (h == 1) {
      return(object$fitted)
    }
    else {
      return(hfitted(object = object, h = h, FUN = "arfima", ...))
    }
  }
  else {
    if (h != 1) {
      warning("h-step fits are not supported for models produced by fracdiff(), returning one-step fits (h=1)")
    }
    x <- getResponse(object)
    return(x - residuals(object))
  }
}

Try the forecast package in your browser

Any scripts or data that you put into this service are public.

forecast documentation built on June 22, 2024, 9:20 a.m.