Nothing
fitPreviousTBATSModel <- function(y, model, biasadj=FALSE) {
seasonal.periods <- model$seasonal.periods
if (is.null(seasonal.periods) == FALSE) {
seasonal.periods <- sort(seasonal.periods)
}
# Get the parameters out of the param.vector
paramz <- unParameteriseTBATS(model$parameters$vect, model$parameters$control)
lambda <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
if (!is.null(beta.v)) {
adj.beta <- 1
} else {
adj.beta <- 0
}
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if (!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs, nrow = 1, ncol = p)
} else {
ar.coefs <- NULL
p <- 0
}
if (!is.null(paramz$ma.coefs)) {
q <- length(paramz$ma.coefs)
ma.coefs <- matrix(paramz$ma.coefs, nrow = 1, ncol = q)
} else {
ma.coefs <- NULL
q <- 0
}
if (!is.null(seasonal.periods)) {
tau <- as.integer(2 * sum(model$k.vector))
gamma.bold <- matrix(0, nrow = 1, ncol = (2 * sum(model$k.vector)))
} else {
tau <- as.integer(0)
gamma.bold <- NULL
}
g <- matrix(0, nrow = ((2 * sum(model$k.vector)) + 1 + adj.beta + p + q), ncol = 1)
if (p != 0) {
g[(1 + adj.beta + tau + 1), 1] <- 1
}
if (q != 0) {
g[(1 + adj.beta + tau + p + 1), 1] <- 1
}
y.touse <- y
if (is.null(lambda) == FALSE) {
y.touse <- BoxCox(y, lambda = lambda)
lambda <- attr(y.touse, "lambda")
}
## Calculate the variance:
# 1. Re-set up the matrices
w <- .Call("makeTBATSWMatrix", smallPhi_s = small.phi, kVector_s = model$k.vector, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, tau_s = tau, PACKAGE = "forecast")
if (!is.null(gamma.bold)) {
.Call("updateTBATSGammaBold", gammaBold_s = gamma.bold, kVector_s = model$k.vector, gammaOne_s = gamma.one.v, gammaTwo_s = gamma.two.v, PACKAGE = "forecast")
}
.Call("updateTBATSGMatrix", g_s = g, gammaBold_s = gamma.bold, alpha_s = alpha, beta_s = beta.v, PACKAGE = "forecast")
F <- makeTBATSFMatrix(alpha = alpha, beta = beta.v, small.phi = small.phi, seasonal.periods = seasonal.periods, k.vector = model$k.vector, gamma.bold.matrix = gamma.bold, ar.coefs = ar.coefs, ma.coefs = ma.coefs)
.Call("updateFMatrix", F, small.phi, alpha, beta.v, gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE = "forecast")
# 2. Calculate!
fitted.values.and.errors <- calcModel(y.touse, model$seed.states, F, g, w)
e <- fitted.values.and.errors$e
fitted.values <- fitted.values.and.errors$y.hat
variance <- sum((e * e)) / length(y)
if (!is.null(lambda)) {
fitted.values <- InvBoxCox(fitted.values, lambda = lambda, biasadj, variance)
}
model.for.output <- model
model.for.output$variance <- variance
model.for.output$fitted.values <- ts(c(fitted.values))
model.for.output$errors <- ts(c(e))
tsp(model.for.output$fitted.values) <- tsp(model.for.output$errors) <- tsp(y)
model.for.output$x <- fitted.values.and.errors$x
model.for.output$y <- y
return(model.for.output)
}
fitSpecificTBATS <- function(y, use.box.cox, use.beta, use.damping, seasonal.periods=NULL, k.vector=NULL, starting.params=NULL, x.nought=NULL, ar.coefs=NULL, ma.coefs=NULL, init.box.cox=NULL, bc.lower=0, bc.upper=1, biasadj=FALSE) {
if (!is.null(seasonal.periods)) {
seasonal.periods <- sort(seasonal.periods)
}
## Meaning/purpose of the first if() statement: If this is the first pass, then use default starting values. Else if it is the second pass, then use the values form the first pass as starting values.
if (is.null(starting.params)) {
## Check for the existence of ARMA() coefficients
if (!is.null(ar.coefs)) {
p <- length(ar.coefs)
} else {
p <- 0
}
if (!is.null(ma.coefs)) {
q <- length(ma.coefs)
} else {
q <- 0
}
# Calculate starting values:
alpha <- 0.09
if (use.beta) {
adj.beta <- 1
beta.v <- 0.05
b <- 0.00
if (use.damping) {
small.phi <- .999
} else {
small.phi <- 1
}
} else {
adj.beta <- 0
beta.v <- NULL
b <- NULL
small.phi <- NULL
use.damping <- FALSE
}
if (!is.null(seasonal.periods)) {
gamma.one.v <- rep(0, length(k.vector))
gamma.two.v <- rep(0, length(k.vector))
s.vector <- numeric(2 * sum(k.vector))
k.vector <- as.integer(k.vector)
} else {
gamma.one.v <- NULL
gamma.two.v <- NULL
s.vector <- NULL
}
if (use.box.cox) {
if (!is.null(init.box.cox)) {
lambda <- init.box.cox
} else {
lambda <- BoxCox.lambda(y, lower = 0, upper = 1.5)
}
y.transformed <- BoxCox(y, lambda = lambda)
lambda <- attr(y.transformed, "lambda")
} else { # the "else" is not needed at the moment
lambda <- NULL
}
} else {
paramz <- unParameteriseTBATS(starting.params$vect, starting.params$control)
lambda <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
if (!is.null(beta.v)) {
adj.beta <- 1
} else {
adj.beta <- 0
}
b <- 0
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if (!is.null(seasonal.periods)) {
s.vector <- numeric(2 * sum(k.vector))
} else {
s.vector <- NULL
}
# ar.coefs <- paramz$ar.coefs
# ma.coefs <- paramz$ma.coefs
## Check for the existence of ARMA() coefficients
if (!is.null(ar.coefs)) {
p <- length(ar.coefs)
} else {
p <- 0
}
if (!is.null(ma.coefs)) {
q <- length(ma.coefs)
} else {
q <- 0
}
}
if (is.null(x.nought)) {
# Start with the seed states equal to zero
if (!is.null(ar.coefs)) {
d.vector <- numeric(length(ar.coefs))
} else {
d.vector <- NULL
}
if (!is.null(ma.coefs)) {
epsilon.vector <- numeric(length(ma.coefs))
} else {
epsilon.vector <- NULL
}
x.nought <- makeXMatrix(l = 0, b = b, s.vector = s.vector, d.vector = d.vector, epsilon.vector = epsilon.vector)$x
}
# Make the parameter vector parameterise
param.vector <- parameterise(alpha = alpha, beta.v = beta.v, small.phi = small.phi, gamma.v = cbind(gamma.one.v, gamma.two.v), lambda = lambda, ar.coefs = ar.coefs, ma.coefs = ma.coefs)
par.scale <- makeParscale(param.vector$control)
if (!is.null(seasonal.periods)) {
tau <- as.integer(2 * sum(k.vector))
} else {
tau <- as.integer(0)
}
w <- .Call("makeTBATSWMatrix", smallPhi_s = small.phi, kVector_s = k.vector, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, tau_s = tau, PACKAGE = "forecast")
if (!is.null(seasonal.periods)) {
gamma.bold <- matrix(0, nrow = 1, ncol = (2 * sum(k.vector)))
.Call("updateTBATSGammaBold", gammaBold_s = gamma.bold, kVector_s = k.vector, gammaOne_s = gamma.one.v, gammaTwo_s = gamma.two.v, PACKAGE = "forecast")
} else {
gamma.bold <- NULL
}
g <- matrix(0, nrow = ((2 * sum(k.vector)) + 1 + adj.beta + p + q), ncol = 1)
if (p != 0) {
g[(1 + adj.beta + tau + 1), 1] <- 1
}
if (q != 0) {
g[(1 + adj.beta + tau + p + 1), 1] <- 1
}
.Call("updateTBATSGMatrix", g_s = g, gammaBold_s = gamma.bold, alpha_s = alpha, beta_s = beta.v, PACKAGE = "forecast")
F <- makeTBATSFMatrix(alpha = alpha, beta = beta.v, small.phi = small.phi, seasonal.periods = seasonal.periods, k.vector = k.vector, gamma.bold.matrix = gamma.bold, ar.coefs = ar.coefs, ma.coefs = ma.coefs)
D <- F - g %*% w$w.transpose
####
# Set up environment
opt.env <- new.env()
assign("F", F, envir = opt.env)
assign("w.transpose", w$w.transpose, envir = opt.env)
assign("g", g, envir = opt.env)
assign("gamma.bold", gamma.bold, envir = opt.env)
assign("k.vector", k.vector, envir = opt.env)
assign("y", matrix(y, nrow = 1, ncol = length(y)), envir = opt.env)
assign("y.hat", matrix(0, nrow = 1, ncol = length(y)), envir = opt.env)
assign("e", matrix(0, nrow = 1, ncol = length(y)), envir = opt.env)
assign("x", matrix(0, nrow = length(x.nought), ncol = length(y)), envir = opt.env)
## Set up matrices to find the seed states
if (use.box.cox) {
y.transformed <- BoxCox(y, lambda = lambda)
lambda <- attr(y.transformed, "lambda")
.Call("calcTBATSFaster", ys = matrix(y.transformed, nrow = 1, ncol = length(y.transformed)), yHats = opt.env$y.hat, wTransposes = opt.env$w.transpose, Fs = opt.env$F, xs = opt.env$x, gs = opt.env$g, es = opt.env$e, xNought_s = x.nought, PACKAGE = "forecast")
y.tilda <- opt.env$e
} else {
.Call("calcTBATSFaster", ys = opt.env$y, yHats = opt.env$y.hat, wTransposes = opt.env$w.transpose, Fs = opt.env$F, xs = opt.env$x, gs = opt.env$g, es = opt.env$e, xNought_s = x.nought, PACKAGE = "forecast")
y.tilda <- opt.env$e
}
w.tilda.transpose <- matrix(0, nrow = length(y), ncol = ncol(w$w.transpose))
w.tilda.transpose[1, ] <- w$w.transpose
w.tilda.transpose <- .Call("calcWTilda", wTildaTransposes = w.tilda.transpose, Ds = D, PACKAGE = "forecast")
# Remove the AR() and MA() bits if they exist
if ((p != 0) | (q != 0)) {
end.cut <- ncol(w.tilda.transpose)
start.cut <- end.cut - (p + q) + 1
w.tilda.transpose <- w.tilda.transpose[, -c(start.cut:end.cut)]
}
x.nought <- lm(t(y.tilda) ~ w.tilda.transpose - 1)$coefficients
x.nought <- matrix(x.nought, nrow = length(x.nought), ncol = 1)
## Replace the AR() and MA() bits if they exist
if ((p != 0) | (q != 0)) {
arma.seed.states <- numeric((p + q))
arma.seed.states <- matrix(arma.seed.states, nrow = length(arma.seed.states), ncol = 1)
x.nought <- rbind(x.nought, arma.seed.states)
}
## Optimisation
if (use.box.cox) {
# Un-transform the seed states
assign("x.nought.untransformed", InvBoxCox(x.nought, lambda = lambda), envir = opt.env)
# Optimise the likelihood function
optim.like <- optim(
par = param.vector$vect, fn = calcLikelihoodTBATS, method = "Nelder-Mead",
opt.env = opt.env, use.beta = use.beta, use.small.phi = use.damping,
seasonal.periods = seasonal.periods, param.control = param.vector$control,
p = p, q = q, tau = tau, bc.lower = bc.lower, bc.upper = bc.upper,
control = list(maxit = (100 * length(param.vector$vect) ^ 2), parscale = par.scale)
)
# Get the parameters out of the param.vector
paramz <- unParameteriseTBATS(optim.like$par, param.vector$control)
lambda <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if (!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs, nrow = 1, ncol = p)
} else {
ar.coefs <- NULL
p <- 0
}
if (!is.null(paramz$ma.coefs)) {
q <- length(paramz$ma.coefs)
ma.coefs <- matrix(paramz$ma.coefs, nrow = 1, ncol = q)
} else {
ma.coefs <- NULL
q <- 0
}
# Transform the seed states
x.nought <- BoxCox(opt.env$x.nought.untransformed, lambda = lambda)
lambda <- attr(x.nought, "lambda")
## Calculate the variance:
# 1. Re-set up the matrices
w <- .Call("makeTBATSWMatrix", smallPhi_s = small.phi, kVector_s = k.vector, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, tau_s = tau, PACKAGE = "forecast")
if (!is.null(gamma.bold)) {
.Call("updateTBATSGammaBold", gammaBold_s = gamma.bold, kVector_s = k.vector, gammaOne_s = gamma.one.v, gammaTwo_s = gamma.two.v, PACKAGE = "forecast")
}
.Call("updateTBATSGMatrix", g_s = g, gammaBold_s = gamma.bold, alpha_s = alpha, beta_s = beta.v, PACKAGE = "forecast")
.Call("updateFMatrix", F, small.phi, alpha, beta.v, gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE = "forecast")
# 2. Calculate!
y.transformed <- BoxCox(y, lambda = lambda)
lambda <- attr(y.transformed, "lambda")
fitted.values.and.errors <- calcModel(y.transformed, x.nought, F, g, w)
e <- fitted.values.and.errors$e
variance <- sum((e * e)) / length(y)
fitted.values <- InvBoxCox(fitted.values.and.errors$y.hat, lambda = lambda, biasadj, variance)
attr(lambda, "biasadj") <- biasadj
# e <- InvBoxCox(e, lambda=lambda)
ee <- y - fitted.values
} else { # else if we are not using the Box-Cox transformation
# Optimise the likelihood function
if (length(param.vector$vect) > 1) {
optim.like <- optim(par = param.vector$vect, fn = calcLikelihoodNOTransformedTBATS, method = "Nelder-Mead", opt.env = opt.env, x.nought = x.nought, use.beta = use.beta, use.small.phi = use.damping, seasonal.periods = seasonal.periods, param.control = param.vector$control, p = p, q = q, tau = tau, control = list(maxit = (100 * length(param.vector$vect) ^ 2), parscale = par.scale))
} else {
optim.like <- optim(par = param.vector$vect, fn = calcLikelihoodNOTransformedTBATS, method = "BFGS", opt.env = opt.env, x.nought = x.nought, use.beta = use.beta, use.small.phi = use.damping, seasonal.periods = seasonal.periods, param.control = param.vector$control, p = p, q = q, tau = tau, control = list(parscale = par.scale))
}
# Get the parameters out of the param.vector
paramz <- unParameteriseTBATS(optim.like$par, param.vector$control)
lambda <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if (!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs, nrow = 1, ncol = p)
} else {
ar.coefs <- NULL
p <- 0
}
if (!is.null(paramz$ma.coefs)) {
q <- length(paramz$ma.coefs)
ma.coefs <- matrix(paramz$ma.coefs, nrow = 1, ncol = q)
} else {
ma.coefs <- NULL
q <- 0
}
## Calculate the variance:
# 1. Re-set up the matrices
w <- .Call("makeTBATSWMatrix", smallPhi_s = small.phi, kVector_s = k.vector, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, tau_s = tau, PACKAGE = "forecast")
if (!is.null(gamma.bold)) {
.Call("updateTBATSGammaBold", gammaBold_s = gamma.bold, kVector_s = k.vector, gammaOne_s = gamma.one.v, gammaTwo_s = gamma.two.v, PACKAGE = "forecast")
}
.Call("updateTBATSGMatrix", g_s = g, gammaBold_s = gamma.bold, alpha_s = alpha, beta_s = beta.v, PACKAGE = "forecast")
.Call("updateFMatrix", F, small.phi, alpha, beta.v, gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE = "forecast")
# 2. Calculate!
fitted.values.and.errors <- calcModel(y, x.nought, F, g, w)
e <- fitted.values.and.errors$e
fitted.values <- fitted.values.and.errors$y.hat
variance <- sum((e * e)) / length(y)
}
# Get the likelihood
likelihood <- optim.like$value
# Calculate the AIC
aic <- likelihood + 2 * (length(param.vector$vect) + nrow(x.nought))
# Make a list object
fits <- ts(c(fitted.values))
e <- ts(c(e))
tsp(fits) <- tsp(e) <- tsp(y)
model.for.output <- list(
lambda = lambda, alpha = alpha, beta = beta.v, damping.parameter = small.phi, gamma.one.values = gamma.one.v, gamma.two.values = gamma.two.v, ar.coefficients = ar.coefs, ma.coefficients = ma.coefs, likelihood = likelihood, optim.return.code = optim.like$convergence, variance = variance, AIC = aic, parameters = list(vect = optim.like$par, control = param.vector$control), seed.states = x.nought,
fitted.values = fits, errors = e, x = fitted.values.and.errors$x, seasonal.periods = seasonal.periods, k.vector = k.vector, y = y, p = p, q = q
)
class(model.for.output) <- c("tbats", "bats")
return(model.for.output)
}
calcLikelihoodTBATS <- function(param.vector, opt.env, use.beta, use.small.phi, seasonal.periods, param.control, p=0, q=0, tau=0, bc.lower=0, bc.upper=1) {
# param vector should be as follows: Box-Cox.parameter, alpha, beta, small.phi, gamma.vector, ar.coefs, ma.coefs
# Put the components of the param.vector into meaningful individual variables
paramz <- unParameteriseTBATS(param.vector, param.control)
box.cox.parameter <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
ar.coefs <- paramz$ar.coefs
ma.coefs <- paramz$ma.coefs
if (!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs, nrow = 1, ncol = p)
} else {
ar.coefs <- NULL
p <- 0
}
if (!is.null(paramz$ma.coefs)) {
q <- length(paramz$ma.coefs)
ma.coefs <- matrix(paramz$ma.coefs, nrow = 1, ncol = q)
} else {
ma.coefs <- NULL
q <- 0
}
x.nought <- BoxCox(opt.env$x.nought.untransformed, lambda = box.cox.parameter)
lambda <- attr(x.nought, "lambda")
.Call("updateWtransposeMatrix", wTranspose_s = opt.env$w.transpose, smallPhi_s = small.phi, tau_s = as.integer(tau), arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, p_s = as.integer(p), q_s = as.integer(q), PACKAGE = "forecast")
if (!is.null(opt.env$gamma.bold)) {
.Call("updateTBATSGammaBold", gammaBold_s = opt.env$gamma.bold, kVector_s = opt.env$k.vector, gammaOne_s = gamma.one.v, gammaTwo_s = gamma.two.v)
}
.Call("updateTBATSGMatrix", g_s = opt.env$g, gammaBold_s = opt.env$gamma.bold, alpha_s = alpha, beta_s = beta.v, PACKAGE = "forecast")
.Call("updateFMatrix", opt.env$F, small.phi, alpha, beta.v, opt.env$gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE = "forecast")
mat.transformed.y <- BoxCox(opt.env$y, box.cox.parameter)
lambda <- attr(mat.transformed.y, "lambda")
n <- ncol(opt.env$y)
.Call("calcTBATSFaster", ys = mat.transformed.y, yHats = opt.env$y.hat, wTransposes = opt.env$w.transpose, Fs = opt.env$F, xs = opt.env$x, gs = opt.env$g, es = opt.env$e, xNought_s = x.nought, PACKAGE = "forecast")
##
####
####################################################################
log.likelihood <- n * log(sum(opt.env$e ^ 2)) - 2 * (box.cox.parameter - 1) * sum(log(opt.env$y))
if (is.na(log.likelihood)) { # Not sure why this would occur
return(Inf)
}
assign("D", (opt.env$F - opt.env$g %*% opt.env$w.transpose), envir = opt.env)
if (checkAdmissibility(opt.env, box.cox = box.cox.parameter, small.phi = small.phi, ar.coefs = ar.coefs, ma.coefs = ma.coefs, tau = sum(seasonal.periods), bc.lower = bc.lower, bc.upper = bc.upper)) {
return(log.likelihood)
} else {
return(Inf)
}
}
calcLikelihoodNOTransformedTBATS <- function(param.vector, opt.env, x.nought, use.beta, use.small.phi, seasonal.periods, param.control, p=0, q=0, tau=0) {
# The likelihood function without the Box-Cox Transformation
# param vector should be as follows: alpha, beta, small.phi, gamma.vector, ar.coefs, ma.coefs
# Put the components of the param.vector into meaningful individual variables
paramz <- unParameteriseTBATS(param.vector, param.control)
box.cox.parameter <- paramz$lambda
alpha <- paramz$alpha
beta.v <- paramz$beta
small.phi <- paramz$small.phi
gamma.one.v <- paramz$gamma.one.v
gamma.two.v <- paramz$gamma.two.v
if (!is.null(paramz$ar.coefs)) {
p <- length(paramz$ar.coefs)
ar.coefs <- matrix(paramz$ar.coefs, nrow = 1, ncol = p)
} else {
ar.coefs <- NULL
p <- 0
}
if (!is.null(paramz$ma.coefs)) {
q <- length(paramz$ma.coefs)
ma.coefs <- matrix(paramz$ma.coefs, nrow = 1, ncol = q)
} else {
ma.coefs <- NULL
q <- 0
}
.Call("updateWtransposeMatrix", wTranspose_s = opt.env$w.transpose, smallPhi_s = small.phi, tau_s = as.integer(tau), arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, p_s = as.integer(p), q_s = as.integer(q), PACKAGE = "forecast")
if (!is.null(opt.env$gamma.bold)) {
.Call("updateTBATSGammaBold", gammaBold_s = opt.env$gamma.bold, kVector_s = opt.env$k.vector, gammaOne_s = gamma.one.v, gammaTwo_s = gamma.two.v)
}
.Call("updateTBATSGMatrix", g_s = opt.env$g, gammaBold_s = opt.env$gamma.bold, alpha_s = alpha, beta_s = beta.v, PACKAGE = "forecast")
.Call("updateFMatrix", opt.env$F, small.phi, alpha, beta.v, opt.env$gamma.bold, ar.coefs, ma.coefs, tau, PACKAGE = "forecast")
n <- ncol(opt.env$y)
.Call("calcTBATSFaster", ys = opt.env$y, yHats = opt.env$y.hat, wTransposes = opt.env$w.transpose, Fs = opt.env$F, xs = opt.env$x, gs = opt.env$g, es = opt.env$e, xNought_s = x.nought, PACKAGE = "forecast")
##
####
####################################################################
log.likelihood <- n * log(sum(opt.env$e * opt.env$e))
if (is.na(log.likelihood)) { # Not sure why this would occur
return(Inf)
}
assign("D", (opt.env$F - opt.env$g %*% opt.env$w.transpose), envir = opt.env)
if (checkAdmissibility(opt.env = opt.env, box.cox = NULL, small.phi = small.phi, ar.coefs = ar.coefs, ma.coefs = ma.coefs, tau = tau)) {
return(log.likelihood)
} else {
return(Inf)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.