Description Usage Arguments Value Methods and related functions Examples
The purpose of this function is to support investigation into the stability of hyperparameters in the nested cross-validation and across forecast horizons.
1 | return_hyper(forecast_model, hyper_function)
|
forecast_model |
An object of class 'forecast_model' from |
hyper_function |
A user-defined function for retrieving model hyperparameters. See the example below for details. |
An S3 object of class 'forecast_model_hyper': A data.frame of model-specific hyperparameters.
The output of return_hyper()
has the following generic S3 methods
plot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 | # Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")
# Example - Training data for 2 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 12)
lookback <- 1:15
data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)
# One custom validation window at the end of the dataset.
windows <- create_windows(data_train, window_start = 181, window_stop = 192)
# User-define model - LASSO
# A user-defined wrapper function for model training that takes the following
# arguments: (1) a horizon-specific data.frame made with create_lagged_df(..., type = "train")
# (e.g., my_lagged_df$horizon_h) and, optionally, (2) any number of additional named arguments
# which are passed as '...' in train_model().
library(glmnet)
model_function <- function(data, my_outcome_col) {
x <- data[, -(my_outcome_col), drop = FALSE]
y <- data[, my_outcome_col, drop = FALSE]
x <- as.matrix(x, ncol = ncol(x))
y <- as.matrix(y, ncol = ncol(y))
model <- glmnet::cv.glmnet(x, y, nfolds = 3)
return(model)
}
# my_outcome_col = 1 is passed in ... but could have been defined in model_function().
model_results <- train_model(data_train, windows, model_name = "LASSO", model_function,
my_outcome_col = 1)
# User-defined prediction function - LASSO
# The predict() wrapper takes two positional arguments. First,
# the returned model from the user-defined modeling function (model_function() above).
# Second, a data.frame of predictors--identical to the datasets returned from
# create_lagged_df(..., type = "train"). The function can return a 1- or 3-column data.frame
# with either (a) point forecasts or (b) point forecasts plus lower and upper forecast
# bounds (column order and column names do not matter).
prediction_function <- function(model, data_features) {
x <- as.matrix(data_features, ncol = ncol(data_features))
data_pred <- data.frame("y_pred" = predict(model, x, s = "lambda.min"))
return(data_pred)
}
# Predict on the validation datasets.
data_valid <- predict(model_results, prediction_function = list(prediction_function),
data = data_train)
# User-defined hyperparameter function - LASSO
# The hyperparameter function should take one positional argument--the returned model
# from the user-defined modeling function (model_function() above). It should
# return a 1-row data.frame of the optimal hyperparameters.
hyper_function <- function(model) {
lambda_min <- model$lambda.min
lambda_1se <- model$lambda.1se
data_hyper <- data.frame("lambda_min" = lambda_min, "lambda_1se" = lambda_1se)
return(data_hyper)
}
data_error <- return_error(data_valid)
data_hyper <- return_hyper(model_results, hyper_function)
plot(data_hyper, data_valid, data_error, type = "stability", horizons = c(1, 12))
|
Loading required package: dplyr
Attaching package: ‘dplyr’
The following objects are masked from ‘package:stats’:
filter, lag
The following objects are masked from ‘package:base’:
intersect, setdiff, setequal, union
Loading required package: Matrix
Loaded glmnet 4.0-2
Warning message:
In return_error(data_valid) :
'rmsse' was not calculated. The 'rmsse' metric needs a dataset of actuals passed in 'data_test' and 'test_indices'.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.