Description Usage Arguments Value Error Metrics Methods and related functions Examples
Compute forecast error metrics on the validation datasets or a new test dataset.
1 2 3 4 5 6 7 8 9 10 11 |
data_results |
An object of class 'training_results' or 'forecast_results' from running (a)
|
data_test |
Required for forecast results only. If |
test_indices |
Required if |
aggregate |
Default |
metrics |
A character vector of common forecast error metrics. The default behavior is to return all metrics. |
models |
Optional. A character vector of user-defined model names supplied to |
horizons |
Optional. A numeric vector to filter results by horizon. |
windows |
Optional. A numeric vector to filter results by validation window number. |
group_filter |
Optional. A string for filtering plot results for grouped time series
(e.g., |
An S3 object of class 'validation_error', 'forecast_error', or 'forecastML_error': A list of data.frames
of error metrics for the validation or forecast dataset depending on the class of data_results
: 'training_results',
'forecast_results', or 'forecastML' from combine_forecasts()
.
A list containing:
Error metrics by model, horizon, and validation window
Error metrics by model and horizon, collapsed across validation windows
Global error metrics by model collapsed across horizons and validation windows
mae
: Mean absolute error (works with factor outcomes)
mape
: Mean absolute percentage error
mdape
: Median absolute percentage error
smape
: Symmetrical mean absolute percentage error
rmse
: Root mean squared error
rmsse
: Root mean squared scaled error from the M5 competition
The output of return_error()
has the following generic S3 methods
plot
from return_error()
plot
from return_error()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | # Sampled Seatbelts data from the R package datasets.
data("data_seatbelts", package = "forecastML")
# Example - Training data for 2 horizon-specific models w/ common lags per predictor.
horizons <- c(1, 12)
lookback <- 1:15
data_train <- create_lagged_df(data_seatbelts, type = "train", outcome_col = 1,
lookback = lookback, horizon = horizons)
# One custom validation window at the end of the dataset.
windows <- create_windows(data_train, window_start = 181, window_stop = 192)
# User-define model - LASSO
# A user-defined wrapper function for model training that takes the following
# arguments: (1) a horizon-specific data.frame made with create_lagged_df(..., type = "train")
# (e.g., my_lagged_df$horizon_h) and, optionally, (2) any number of additional named arguments
# which are passed as '...' in train_model().
library(glmnet)
model_function <- function(data, my_outcome_col) {
x <- data[, -(my_outcome_col), drop = FALSE]
y <- data[, my_outcome_col, drop = FALSE]
x <- as.matrix(x, ncol = ncol(x))
y <- as.matrix(y, ncol = ncol(y))
model <- glmnet::cv.glmnet(x, y, nfolds = 3)
return(model)
}
# my_outcome_col = 1 is passed in ... but could have been defined in model_function().
model_results <- train_model(data_train, windows, model_name = "LASSO", model_function,
my_outcome_col = 1)
# User-defined prediction function - LASSO
# The predict() wrapper takes two positional arguments. First,
# the returned model from the user-defined modeling function (model_function() above).
# Second, a data.frame of predictors--identical to the datasets returned from
# create_lagged_df(..., type = "train"). The function can return a 1- or 3-column data.frame
# with either (a) point forecasts or (b) point forecasts plus lower and upper forecast
# bounds (column order and column names do not matter).
prediction_function <- function(model, data_features) {
x <- as.matrix(data_features, ncol = ncol(data_features))
data_pred <- data.frame("y_pred" = predict(model, x, s = "lambda.min"))
return(data_pred)
}
# Predict on the validation datasets.
data_valid <- predict(model_results, prediction_function = list(prediction_function),
data = data_train)
# Forecast error metrics for validation datasets.
data_error <- return_error(data_valid)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.