Nothing
# This tests a few things that are not run in the examples.
library(fpc)
library(MASS)
library(diptest)
library(mclust)
options(digits=3)
set.seed(4634)
face <- rFace(300,dMoNo=2,dNoEy=0,p=3)
grface <- as.integer(attr(face,"grouping"))
# discrproj(face,grface, clnum=1, method="bc")$units
discrproj(face,grface, clnum=1, method="anc")$units
discrproj(face,grface, clnum=1, method="awc")$units
pamk(face,krange=1:5,criterion="ch",usepam=FALSE,critout=TRUE)
set.seed(20000)
face50 <- rFace(50,dMoNo=2,dNoEy=0,p=2)
pamk(dist(face50),krange=1:5,criterion="asw",critout=TRUE)
x <- c(1,2,3,6,6,7,8,120)
ff8 <- fixmahal(x)
summary(ff8)
# ...dataset a bit too small for the defaults...
ff9 <- fixmahal(x, mnc=3, startn=3)
summary(ff9)
set.seed(776655)
v1 <- rnorm(100)
v2 <- rnorm(100)
d1 <- sample(1:5,100,replace=TRUE)
d2 <- sample(1:4,100,replace=TRUE)
ldata <- cbind(v1,v2,d1,d2)
fr <- flexmixedruns(ldata,
continuous=2,discrete=2,simruns=1,initial.cluster=c(rep(1,5),rep(2,45),
rep(3,50)),
control=list(minprior=0.1),
n.cluster=3,allout=FALSE)
print(fr$optsummary)
dface <- dist(face50)
hclusttreeCBI(face50,minlevel=2,method="complete",scaling=TRUE)
disthclusttreeCBI(dface,minlevel=2,method="complete")
noisemclustCBI(face50,G=1:5,emModelNames="VVV",nnk=2)
distnoisemclustCBI(dface,G=5,emModelNames="EEE",nnk=2,
mdsmethod="classical",
mdsdim=2)
mahalCBI(face50,clustercut=0.5)
set.seed(20000)
face100 <- rFace(100,dMoNo=2,dNoEy=0,p=2)
cbf <- clusterboot(face100,B=2,clustermethod=speccCBI,showplots=TRUE,k=6,seed=50000)
cbf$nc
cbf$noisemethod
cbf$bootmethod
# suppressWarnings(if(require(tclust))
# print(clusterboot(face100,B=2,clustermethod=tclustCBI,showplots=TRUE,k=5,seed=50000,noisemethod=TRUE)))
complete3 <- cutree(hclust(dface),3)
cluster.stats(dface,complete3,G2=TRUE)
set.seed(55667788)
data(crabs)
dc <- crabs[,4:8]
cmo <- mclustBIC(crabs[,4:8],G=9,modelNames="EEE")
# set.seed(12345)
cm <- mclustBIC(crabs[,4:8],G=9,modelNames="EEE",
initialization=list(noise=(1:200)[sample(200,50)]))
scm <- summary(cm,crabs[,4:8])
scmo <- summary(cmo,crabs[,4:8])
set.seed(334455)
summary(mergenormals(crabs[,4:8],scm,method="ridge.ratio",by=0.05))
summary(mergenormals(crabs[,4:8],scmo,method="ridge.uni",by=0.05))
# summary(mergenormals(crabs[,4:8],scm,method="diptantrum",by=0.05))
# summary(mergenormals(crabs[,4:8],scmo,method="dipuni",by=0.05))
# summary(mergenormals(crabs[,4:8],scm,method="predictive",M=2))
set.seed(20000)
x1 <- rnorm(50)
y <- rnorm(100)
x2 <- rnorm(40,mean=20)
x3 <- rnorm(10,mean=25,sd=100)
x0 <- cbind(c(x1,x2,x3),y)
prediction.strength(x0,M=10,Gmax=4,
clustermethod=noisemclustCBI,
classification="qda")
prediction.strength(dist(x0),M=10,Gmax=4,
clustermethod=claraCBI,
classification="centroids")
set.seed(20000)
xdata <- c(rnorm(10,0,1),rnorm(10,8,1))
clustermethod=c("claraCBI","dbscanCBI")
clustermethodpars <- list()
clustermethodpars[[1]] <- clustermethodpars[[2]] <- list()
clustermethodpars[[2]]$eps <- 2
clustermethodpars[[2]]$MinPts <- 2
cbs <- clusterbenchstats(xdata,G=3,clustermethod=clustermethod,
distmethod=rep(TRUE,2),ncinput=c(TRUE,FALSE),scaling=FALSE,
clustermethodpars=clustermethodpars,nnruns=2,kmruns=2,fnruns=1,avenruns=1,useallg=TRUE)
print(cbs$sstat,aggregate=TRUE,weights=c(1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1),include.othernc=cbs$cm$othernc)
print(cbs$qstat,aggregate=TRUE,weights=c(1,0,0,0,0,1,0,0,0,1,0,1,1,0,0,1),include.othernc=cbs$cm$othernc)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.