eap | R Documentation |
Compute eap trait estimates for items fit by filtered monotonic polynomial IRT models.
eap(data, bParams, NQuad = 21, priorVar = 2, mintheta = -4, maxtheta = 4)
data |
N(subjects)-by-p(items) matrix of 0/1 item response data. |
bParams |
A p-by-9 matrix of FMP or FUP item parameters and model
designations. Columns 1 - 8 hold the (possibly zero valued) polynomial
coefficients; column 9 holds the value of |
NQuad |
Number of quadrature points used to calculate the eap estimates. |
priorVar |
Variance of the normal prior for the eap estimates. The prior mean equals 0. |
mintheta , maxtheta |
NQuad quadrature points will be evenly spaced
between |
eap trait estimates. |
Niels Waller
## this example demonstrates how to calculate
## eap trait estimates for a scale composed of items
## that have been fit to FMP models of different
## degree
NSubjects <- 2000
## Assume that
## items 1 - 5 fit a k=0 model,
## items 6 - 10 fit a k=1 model, and
## items 11 - 15 fit a k=2 model.
itmParameters <- matrix(c(
# b0 b1 b2 b3 b4 b5, b6, b7, k
-1.05, 1.63, 0.00, 0.00, 0.00, 0, 0, 0, 0, #1
-1.97, 1.75, 0.00, 0.00, 0.00, 0, 0, 0, 0, #2
-1.77, 1.82, 0.00, 0.00, 0.00, 0, 0, 0, 0, #3
-4.76, 2.67, 0.00, 0.00, 0.00, 0, 0, 0, 0, #4
-2.15, 1.93, 0.00, 0.00, 0.00, 0, 0, 0, 0, #5
-1.25, 1.17, -0.25, 0.12, 0.00, 0, 0, 0, 1, #6
1.65, 0.01, 0.02, 0.03, 0.00, 0, 0, 0, 1, #7
-2.99, 1.64, 0.17, 0.03, 0.00, 0, 0, 0, 1, #8
-3.22, 2.40, -0.12, 0.10, 0.00, 0, 0, 0, 1, #9
-0.75, 1.09, -0.39, 0.31, 0.00, 0, 0, 0, 1, #10
-1.21, 9.07, 1.20,-0.01,-0.01, 0.01, 0, 0, 2, #11
-1.92, 1.55, -0.17, 0.50,-0.01, 0.01, 0, 0, 2, #12
-1.76, 1.29, -0.13, 1.60,-0.01, 0.01, 0, 0, 2, #13
-2.32, 1.40, 0.55, 0.05,-0.01, 0.01, 0, 0, 2, #14
-1.24, 2.48, -0.65, 0.60,-0.01, 0.01, 0, 0, 2),#15
15, 9, byrow=TRUE)
# generate data using the above item parameters
ex1.data<-genFMPData(NSubj = NSubjects, bParams = itmParameters,
seed = 345)$data
## calculate eap estimates for mixed models
thetaEAP<-eap(data = ex1.data, bParams = itmParameters,
NQuad = 25, priorVar = 2,
mintheta = -4, maxtheta = 4)
## compare eap estimates with initial theta surrogates
if(FALSE){ #set to TRUE to see plot
thetaInit <- svdNorm(ex1.data)
plot(thetaInit,thetaEAP, xlim = c(-3.5,3.5),
ylim = c(-3.5,3.5),
xlab = "Initial theta surrogates",
ylab = "EAP trait estimates (Mixed models)")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.