| faLocalMin | R Documentation | 
Compute pairwise root mean squared deviations (RMSD) 
among rotated factor patterns in an faMain object. 
Prior to computing the RMSD values, each pair of solutions is aligned to 
the first member of the pair.  Alignment is accomplished using the 
Hungarian algorithm as described in faAlign.
faLocalMin(fout, Set = 1, HPthreshold = 0.1, digits = 5, PrintLevel = 1)
| fout | (Object from class   | 
| Set | (Integer) The index of the solution set (i.e., the collection of 
rotated factor patterns with a common complexity value) from an 
 | 
| HPthreshold | (Scalar) A number between [0, 1] that defines the 
hyperplane threshold. Factor pattern elements below  | 
| digits | (Integer) Specifies the  number of significant 
digits in the printed output. Default  | 
| PrintLevel | (Integer) Determines the level of printed output. PrintLevel = 
 | 
Compute pairwise RMSD values among rotated factor patterns from 
an faMain object.
faLocalMin function will produce the following output.
rmsdTable: (Matrix) A table of RMSD values for each  pair of 
rotated factor patterns in  solution set Set.
Set: (Integer) The index of the user-specified solution set.
complexity.val (Numeric): The common complexity value for all members in the user-specified solution set.
HPcount: (Integer) The hyperplane count for each factor pattern in the solution set.
Niels Waller
Other Factor Analysis Routines: 
BiFAD(),
Box26,
GenerateBoxData(),
Ledermann(),
SLi(),
SchmidLeiman(),
faAlign(),
faEKC(),
faIB(),
faMB(),
faMain(),
faScores(),
faSort(),
faStandardize(),
faX(),
fals(),
fapa(),
fareg(),
fsIndeterminacy(),
orderFactors(),
print.faMB(),
print.faMain(),
promaxQ(),
summary.faMB(),
summary.faMain()
## Not run: 
  ## Generate Population Model and Monte Carlo Samples ####
  sout <- simFA(Model = list(NFac = 5,
                          NItemPerFac = 5,
                           Model = "orthogonal"),
              Loadings = list(FacLoadDist = "fixed",
                              FacLoadRange = .8),
              MonteCarlo = list(NSamples = 100, 
                                SampleSize = 500),
              Seed = 655342)
  ## Population EFA loadings
  (True_A <- sout$loadings)
  ## Population Phi matrix
  sout$Phi
  ## Compute EFA on Sample 67 ####
  fout <- faMain (R = sout$Monte$MCData[[67]],
                numFactors = 5,
                targetMatrix = sout$loadings,
                facMethod = "fals",
                rotate= "cfT",
                rotateControl = list(numberStarts = 50,
                                     standardize="CM",
                                     kappa = 1/25),
                Seed=3366805)
  ## Summarize output from faMain
  summary(fout, Set = 1, DiagnosticsLevel = 2, digits=4)
  ## Investigate Local Solutions
  LMout <- faLocalMin(fout, 
                    Set = 1,
                    HPthreshold = .15,
                    digits= 5, 
                    PrintLevel = 1)
                    
  ## Print hyperplane count for each factor pattern 
  ## in the solution set
  LMout$HPcount
  
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.