View source: R/faStandardize.R
faStandardize  R Documentation 
This function standardizes the unrotated factor loadings using two methods: Kaiser's normalization and CuretonMulaik standardization.
faStandardize(method, lambda)
method 
(Character) The method used for standardization. There are three option: "none", "Kaiser", and "CM".

lambda 
(Matrix) The unrotated factor loadings matrix (or data frame). 
The resulting output can be used to standardize the factor loadings as well as providing the inverse matrix used to unstandardize the factor loadings after rotating the factor solution.
Dv: (Matrix) A diagonal weight matrix used to standardize the unrotated factor loadings. Premultiplying the loadings matrix by the diagonal weight matrix (i.e., Dv
DvInv: (Matrix) The inverse of the diagonal weight matrix used to standardize. To unstandardize the ultimate rotated solution, premultiply the rotated factor loadings by the inverse of Dv (i.e., DvInv
lambda: (Matrix) The standardized, unrotated factor loadings matrix.
unstndLambda: (Matrix) The original, unstandardized, unrotated factor loadings matrix. (DvInv
Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36(1), 111150.
Cureton, E. E., & Mulaik, S. A. (1975). The weighted varimax rotation and the promax rotation. Psychometrika, 40(2), 183195.
Other Factor Analysis Routines:
BiFAD()
,
Box26
,
GenerateBoxData()
,
Ledermann()
,
SLi()
,
SchmidLeiman()
,
faAlign()
,
faEKC()
,
faIB()
,
faLocalMin()
,
faMB()
,
faMain()
,
faScores()
,
faSort()
,
faX()
,
fals()
,
fapa()
,
fareg()
,
fsIndeterminacy()
,
orderFactors()
,
print.faMB()
,
print.faMain()
,
promaxQ()
,
summary.faMB()
,
summary.faMain()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.