Nothing
###
### weak.marginal for data
###
weak_marginal_data_list <- function(CGstats, Ad.list, Ac.list, type="ghk", details=0){
.infoPrint(details,1,"weak_marginal_data_list: Finding weak (empirical) marginals for each generator\n")
ans <- vector("list", length(Ad.list))
for (ii in 1:length(Ad.list)){
EE.mm <- weak_marginal_data(CGstats, disc=Ad.list[[ii]], cont=Ac.list[[ii]],
type=type, details=details)
ans[[ii]] <- EE.mm
}
ans
}
### cgdata: Heterogeneous CGstats
weak_marginal_data <- function(cgdata, disc=NULL, cont=NULL, type="pms", details=2){
## cat("weak_marginal_data - entry\n"); #str(cgdata)
.infoPrint(details,5,
cat("Finding weak marginal (data)",
" disc:",disc, "cont:", cont, "type:", .genType(disc,cont),"\n"))
##str(list(dist=disc, cont=cont))
ans <- switch(.genType(disc, cont),
"discrete" ={.weak.datamarg.disc(cgdata, disc, details)},
"mixed" ={.weak.datamarg.mix (cgdata, disc, cont, details)},
"continuous" ={.weak.datamarg.cont(cgdata, cont, details)})
if (type == "ghk") parm_pms2ghk(ans) else ans
}
.weak.datamarg.disc <- function(cgdata, Ad.idx, details=2){
.infoPrint(details,5, "Finding weak marginal (data-discrete): Ad.idx: ", Ad.idx, "\n")
p <- tabMarg(cgdata$n.obs, Ad.idx)
res <- list(p=p / sum(p), mu=NULL, Sigma=NULL, gentype="discrete", N=cgdata[['N']], Ad.idx=Ad.idx)
##class(res) <- c("pms", "MIparms")
res
}
.weak.datamarg.mix <- function(cgdata, Ad.idx, Ac.idx, details=5){
.infoPrint(details, 5,"Finding weak marginal (data-mixed): Ad.idx: ",
Ad.idx, " Ac.idx :", Ac.idx,"\n")
#print(cgdata$n.obs)
##cat(".weak.datamarg.mix\n"); print(cgdata);
#print(.disc.levels(cgdata))
##n.obs <- cgdata[['n.obs']]
###n.vec <- as.numeric(cgdata[['n.obs']])
n.vec <- c(cgdata[['n.obs']])
n.tot <- sum(cgdata[['n.obs']])
## print("HERE")
p.tab <- cgdata[['n.obs']] / n.tot ## FIXME : Goes wrong here
## print("HERE2")
## print(.disc.levels(cgdata)); print(cgdata$n.obs)
p.A <- tabMarg(p.tab, Ad.idx)
flevels <- .disc.levels(cgdata)
A.levels <- flevels[Ad.idx]
A.dim <- prod(A.levels)
len.Ac <- length(Ac.idx)
n.cont <- length(cgdata$cont.names)
mu.A <- cgdata$center[Ac.idx,,drop=FALSE]
##str(list(A.dim=A.dim, A.levels=A.levels, flevels=flevels))
###Sigma.A <- cgdata$cov[as.numeric(.rowcol2idx(n.cont,Ac.idx)),,drop=FALSE]
Sigma.A <- cgdata$cov[c(.rowcol2idx(n.cont,Ac.idx)), , drop=FALSE]
### Allocate space for results
mu.A.marg <- matrix(0, ncol=A.dim, nrow=len.Ac)
Sigma.A.marg <- matrix(0, ncol=len.Ac, nrow=len.Ac)
QQ <- rep(0, len.Ac^2)
ia <- rep(1, length(Ad.idx)) ## The first cell (1,1,...,1)
## Iteration goes
## cat(sprintf("flevels=%s, Ad.idx=%s A.dim=%d\n",
## .toString(flevels), .toString(Ad.idx), A.dim))
## print("HERE3"); print(cgdata$n.obs)
##str(list(A.dim=A.dim))
for (ii in 1:A.dim){
## print("HERE6"); print(.disc.levels(cgdata)); #print(cgdata$n.obs)
## aa <- list(ia=ia, Ad.idx=Ad.idx, flevels=flevels)
## str(aa)
jia <- slice2entry(ia, Ad.idx, flevels)
## print(jia)
## print("HERE7"); print(.disc.levels(cgdata)); ##print(cgdata$n.obs)
## counts n(ia)
n.jia <- n.vec[jia]
n.ia <- sum(n.jia)
## means \bar y (ia)
mu.jia <- mu.A[,jia, drop=FALSE]
mu.ia <- rowSumsPrim(.colmult(n.jia/n.ia, mu.jia))
mu.A.marg[,ii] <- mu.ia
## SSD(ia)
S.jia <- Sigma.A[,jia,drop=FALSE]
vvv1 <- rowSumsPrim(.colmult(n.jia , S.jia))
sum.ssd.j <- matrix(vvv1, nrow=length(Ac.idx)) ## sum_{j:ja=ia} SSD(j)
mu.dif <- mu.jia - mu.ia
quad <- .vMMt(n.jia, mu.dif)
QQ <- QQ + (sum.ssd.j + quad)/n.tot
ia <- next_cell(ia, A.levels) ## FIXME Think that A.levels and flevels are always same, but do check!
}
rownames(mu.A.marg) <- rownames(Sigma.A.marg)
ans <- list(p=p.A, mu=mu.A.marg, Sigma=QQ,
gentype="mixed", N=cgdata[['N']],
Ad.idx=Ad.idx, Ac.idx=Ac.idx)
##class(ans) <- c("pms", "MIparms")
## print("HERE4"); print(cgdata$n.obs)
ans
}
.weak.datamarg.cont <- function(cgdata, Ac.idx, details=2){
.infoPrint(details, 5, "Finding weak marginal (data-cont) : Ac.idx: ", Ac.idx,"\n")
n.cont <- length(cgdata$cont.names)
n.i <- as.numeric(cgdata$n.obs)
N <- sum(n.i)
mu.i <- cgdata$center[Ac.idx,,drop=FALSE]
Sigma.i <- cgdata$cov[as.numeric(.rowcol2idx(n.cont,Ac.idx)),, drop=FALSE]
p.i <- n.i / sum(n.i)
ssdA.i <- .colmult(n.i, Sigma.i)
sum.ssdA <- matrix(rowSumsPrim(ssdA.i), nrow=length(Ac.idx))
mu.A <- rowSumsPrim(.colmult(p.i, mu.i))
mu.dif <- mu.i - mu.A
quad <- .vMMt(n.i, mu.dif)
Sigma.A <- (sum.ssdA + quad) / N
dim(mu.A) <- c(dim(mu.i)[1],1)
rownames(Sigma.A) <- colnames(Sigma.A) <- rownames(mu.A) <- rownames(mu.i)
ans <- list(p=1, mu=mu.A, Sigma=Sigma.A, gentype="continuous", N=cgdata[['N']], Ac.idx = Ac.idx)
##class(ans) <- c("pms", "MIparms")
ans
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.