Nothing
# FORECASTING OF GAS MODEL FUNCTION
# Forecast GAS Model -----------------------------------------------------------
#' @title Forecast GAS Model
#'
#' @description
#' A function for forecasting of generalized autoregressive score (GAS) models of Creal et al. (2013) and Harvey (2013).
#' Method \code{"mean_path"} filters time-varying parameters based on zero score and then generates mean of time series.
#' Method \code{"simulated_paths"} repeatedly simulates time series, simultaneously filters time-varying parameters, and then estimates mean, standard deviation, and quantiles (see Blasques et al., 2016).
#' Instead of supplying arguments about the model, the function can be applied to the \code{gas} object obtained by the \code{\link[gasmodel:gas]{gas()}} function.
#'
#' @inheritParams gas
#' @inheritParams gas_simulate
#'
#' @param method A method used for forecasting. Supported methods are \code{"mean_path"} and \code{"simulated_paths"}.
#' @param t_ahead A number of observations to forecast.
#' @param x_ahead Out-of-sample exogenous variables. For a single variable common for all time-varying parameters, a numeric vector. For multiple variables common for all time-varying parameters, a numeric matrix with observations in rows. For individual variables for each time-varying parameter, a list of numeric vectors or matrices in the above form. The number of observation must be equal to \code{t_ahead}.
#' @param rep_ahead A number of simulation repetitions for \code{method = "simulated_paths"}.
#' @param quant A numeric vector of probabilities determining quantiles for \code{method = "simulated_paths"}.
#'
#' @return A \code{list} of S3 class \code{gas_forecast} with components:
#' \item{data$y}{The time series.}
#' \item{data$x}{The exogenous variables.}
#' \item{data$x_ahead}{The out-of-sample exogenous variables.}
#' \item{model$distr}{The conditional distribution.}
#' \item{model$param}{The parametrization of the conditional distribution.}
#' \item{model$scaling}{The scaling function.}
#' \item{model$regress}{The specification of the regression and dynamic equation.}
#' \item{model$t}{The length of the time series.}
#' \item{model$t_ahead}{The length of the out-of-sample time series.}
#' \item{model$n}{The dimension of the model.}
#' \item{model$m}{The number of exogenous variables.}
#' \item{model$p}{The score order.}
#' \item{model$q}{The autoregressive order.}
#' \item{model$par_static}{The static parameters.}
#' \item{model$par_link}{The parameters with the logarithmic/logistic links.}
#' \item{model$par_init}{The initial values of the time-varying parameters.}
#' \item{model$coef_est}{The estimated coefficients.}
#' \item{forecast$method}{The method used for forecasting.}
#' \item{forecast$y_ahead_mean}{The mean of the forecasted time series.}
#' \item{forecast$y_ahead_sd}{The standard deviation of the forecasted time series. Only for \code{method = "simulated_paths"}.}
#' \item{forecast$y_ahead_quant}{The quantiles of the forecasted time series. Only for \code{method = "simulated_paths"}.}
#' \item{forecast$par_tv_ahead_mean}{The mean of the forecasted time-varying parameters.}
#' \item{forecast$par_tv_ahead_sd}{The standard deviation of the forecasted time-varying parameters. Only for \code{method = "simulated_paths"}.}
#' \item{forecast$par_tv_ahead_quant}{The quantiles of the forecasted time-varying parameters. Only for \code{method = "simulated_paths"}.}
#' \item{forecast$score_tv_ahead_mean}{The mean of the forecasted scores.}
#' \item{forecast$score_tv_ahead_sd}{The standard deviation of the forecasted scores. Only for \code{method = "simulated_paths"}.}
#' \item{forecast$score_tv_ahead_quant}{The quantiles of the forecasted scores. Only for \code{method = "simulated_paths"}.}
#'
#' @note
#' Supported generic functions for S3 class \code{gas_forecast} include \code{\link[base:summary]{summary()}} ans \code{\link[base:plot]{plot()}}.
#'
#' @references
#' Blasques, F., Koopman, S. J., Łasak, K., and Lucas, A. (2016). In-Sample Confidence Bands and Out-of-Sample Forecast Bands for Time-Varying Parameters in Observation-Driven Models. \emph{International Journal of Forecasting}, \strong{32}(3), 875–887. \doi{10.1016/j.ijforecast.2015.11.018}.
#'
#' Creal, D., Koopman, S. J., and Lucas, A. (2013). Generalized Autoregressive Score Models with Applications. \emph{Journal of Applied Econometrics}, \strong{28}(5), 777–795. \doi{10.1002/jae.1279}.
#'
#' Harvey, A. C. (2013). \emph{Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series}. Cambridge University Press. \doi{10.1017/cbo9781139540933}.
#'
#' @seealso
#' \code{\link[gasmodel:gas]{gas()}}
#'
#' @examples
#' # Load Level of Lake Huron dataset
#' data(LakeHuron)
#' y <- LakeHuron - 570
#' x <- 1:length(y)
#'
#' # Estimate GAS model based on the normal distribution with dynamic mean
#' est_gas <- gas(y = y, x = x, distr = "norm", regress = "sep",
#' coef_start = c(9.99, -0.02, 0.46, 0.67, 0.46))
#' est_gas
#'
#' # Forecast the model by the "mean_paths" method
#' fcst_gas <- gas_forecast(est_gas, method = "mean_path",
#' t_ahead = 22, x_ahead = 99:120)
#' fcst_gas
#'
#' # Plot the forecasted expected value
#' plot(fcst_gas)
#'
#' @export
gas_forecast <- function(gas_object = NULL, method = "mean_path", t_ahead = 1L, x_ahead = NULL, rep_ahead = 1000L, quant = c(0.025, 0.975), y = NULL, x = NULL, distr = NULL, param = NULL, scaling = "unit", regress = "joint", p = 1L, q = 1L, par_static = NULL, par_link = NULL, par_init = NULL, coef_est = NULL) {
if (!is.null(gas_object) && inherits(gas_object, "gas")) {
gas_forecast(gas_object = NULL, method = method, t_ahead = t_ahead, x_ahead = x_ahead, rep_ahead = rep_ahead, quant = quant, y = gas_object$data$y, x = gas_object$data$x, distr = gas_object$model$distr, param = gas_object$model$param, scaling = gas_object$model$scaling, regress = gas_object$model$regress, p = gas_object$model$p, q = gas_object$model$q, par_static = gas_object$model$par_static, par_link = gas_object$model$par_link, par_init = gas_object$model$par_init, coef_est = gas_object$fit$coef_est)
} else if (!is.null(gas_object)) {
stop("Unsupported class of gas_object.")
} else {
model <- list()
model$distr <- check_my_distr(distr = distr)
model$param <- check_my_param(param = param, distr = model$distr)
model$scaling <- check_my_scaling(scaling = scaling)
model$regress <- check_my_regress(regress = regress)
info_distr <- info_distribution(distr = model$distr, param = model$param)
data <- list()
data$y <- check_my_y(y = y, dim = info_distr$dim, type = info_distr$type)
model$t <- check_my_t(y = data$y)
model$t_ahead <- check_my_t(t = t_ahead)
model$n <- check_my_n(y = data$y)
info_par <- info_parameters(distr = model$distr, param = model$param, n = model$n)
data$x <- check_my_x(x = x, t = model$t, par_num = info_par$par_num, group_num = info_par$group_num, par_in_group_num = info_par$par_in_group_num)
model$m <- check_my_m(x = data$x)
data$x_ahead <- check_my_x(x = x_ahead, t = model$t_ahead, m = model$m, par_num = info_par$par_num, group_num = info_par$group_num, par_in_group_num = info_par$par_in_group_num)
model$p <- check_my_p(p = p, par_num = info_par$par_num, group_num = info_par$group_num, par_in_group_num = info_par$par_in_group_num)
model$q <- check_my_q(q = q, par_num = info_par$par_num, group_num = info_par$group_num, par_in_group_num = info_par$par_in_group_num)
model$par_static <- check_my_par_static(par_static = par_static, par_num = info_par$par_num, group_num = info_par$group_num, par_in_group_num = info_par$par_in_group_num)
model$par_static[model$m == 0L & model$p == 0L & model$q == 0L] <- TRUE
data$x[model$par_static] <- list(matrix(NA_real_, nrow = model$t, ncol = 0L))
model$m[model$par_static] <- 0L
model$p[model$par_static] <- 0L
model$q[model$par_static] <- 0L
model$par_link <- check_my_par_link(par_link = par_link, par_static = model$par_static, par_num = info_par$par_num, group_num = info_par$group_num, par_in_group_num = info_par$par_in_group_num)
info_par <- info_linked_parameters(info_par = info_par, par_link = model$par_link)
model$m <- name_vector(model$m, info_par$par_names)
model$p <- name_vector(model$p, info_par$par_names)
model$q <- name_vector(model$q, info_par$par_names)
model$par_static <- name_vector(model$par_static, info_par$par_names)
model$par_link <- name_vector(model$par_link, info_par$par_names)
model$par_init <- name_vector(check_my_par_init(par_init = par_init, par_num = info_par$par_num), info_par$par_names)
info_coef <- info_coefficients(m = model$m, p = model$p, q = model$q, par_static = model$par_static, par_names = info_par$par_names, par_num = info_par$par_num, group_names = info_par$group_names, group_of_par_names = info_par$group_of_par_names)
model$coef_est <- name_vector(check_my_coef_est(coef_est = coef_est, coef_num = info_coef$coef_num), info_coef$coef_names)
fun <- list()
fun$mean <- setup_fun_mean(distr = model$distr, param = model$param, par_trans = info_par$par_trans)
fun$score <- setup_fun_score(distr = model$distr, param = model$param, scaling = model$scaling, orthog = info_distr$orthog, par_trans = info_par$par_trans, par_static = model$par_static)
fun$random <- setup_fun_random(distr = model$distr, param = model$param, par_trans = info_par$par_trans)
comp <- list()
comp$pre_num <- max(c(model$p, model$q, 1L))
comp$full_num <- comp$pre_num + model$t + model$t_ahead
comp$average_x <- lapply(1:info_par$par_num, function(i) { colMeans(data$x[[i]], na.rm = TRUE) })
comp$y <- rbind(matrix(NA_real_, nrow = comp$pre_num, ncol = model$n), data$y, matrix(NA_real_, nrow = model$t_ahead, ncol = model$n))
comp$x <- lapply(1:info_par$par_num, function(i) { rbind(matrix(NA_real_, nrow = comp$pre_num, ncol = model$m[i]), data$x[[i]], data$x_ahead[[i]]) })
comp$par_tv <- matrix(NA_real_, nrow = comp$full_num, ncol = info_par$par_num)
comp$score_tv <- matrix(NA_real_, nrow = comp$full_num, ncol = info_par$par_num)
comp$idx_na <- which(rowSums(cbind(c(rowSums(is.na(comp$y))[1L:(comp$pre_num + model$t)], rep(0L, model$t_ahead)), sapply(comp$x, function(e) { rowSums(is.na(e)) }))) > 0L)
comp$idx_ok <- which(!((1:comp$full_num) %in% comp$idx_na))
comp$idx_ok_regular <- comp$idx_ok[comp$idx_ok <= comp$pre_num + model$t]
comp$idx_ok_ahead <- comp$idx_ok[comp$idx_ok > comp$pre_num + model$t]
comp$struc <- convert_coef_vector_to_struc_list(coef_vec = model$coef_est, m = model$m, p = model$p, q = model$q, par_names = info_par$par_names, par_of_coef_names = info_coef$par_of_coef_names)
comp$omega_vector <- sapply(comp$struc, function(e) { e$omega })
comp$beta_list <- lapply(comp$struc, function(e) { e$beta })
comp$alpha_list <- lapply(comp$struc, function(e) { e$alpha })
comp$phi_list <- lapply(comp$struc, function(e) { e$phi })
forecast <- list()
forecast$method <- check_my_method(method = method, values = c("mean_path", "simulated_paths"))
if (forecast$method == "mean_path") {
if (all(model$p + model$q == 0L)) {
comp$par_init <- model$par_init
if (any(is.na(comp$par_init))) {
comp$par_unc <- sapply(1:info_par$par_num, function(i) { (comp$omega_vector[i] + comp$average_x[[i]] %*% comp$beta_list[[i]]) })
comp$par_init[is.na(comp$par_init)] <- comp$par_unc[is.na(comp$par_init)]
}
if (length(comp$idx_na) > 0L) {
comp$par_tv[comp$idx_na, ] <- matrix(comp$par_init, nrow = length(comp$idx_na), ncol = info_par$par_num, byrow = TRUE)
comp$score_tv[comp$idx_na, ] <- 0
}
comp$par_tv[comp$idx_ok, ] <- matrix(comp$omega_vector, nrow = length(comp$idx_ok), ncol = info_par$par_num, byrow = TRUE)
if (any(model$m > 0L)) {
comp$par_tv[comp$idx_ok, ] <- comp$par_tv[comp$idx_ok, ] + sapply(1L:info_par$par_num, function(i) { comp$x[[i]][comp$idx_ok, , drop = FALSE] %*% comp$beta_list[[i]] })
}
for (j in comp$idx_ok_regular) {
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
comp$score_tv[comp$idx_ok_ahead, ] <- 0
} else if (model$regress == "joint") {
comp$par_init <- model$par_init
if (any(is.na(comp$par_init))) {
comp$par_unc <- sapply(1:info_par$par_num, function(i) { (comp$omega_vector[i] + comp$average_x[[i]] %*% comp$beta_list[[i]]) / (1 - sum(comp$phi_list[[i]])) })
comp$par_init[is.na(comp$par_init)] <- comp$par_unc[is.na(comp$par_init)]
}
if (length(comp$idx_na) > 0L) {
comp$par_tv[comp$idx_na, ] <- matrix(comp$par_init, nrow = length(comp$idx_na), ncol = info_par$par_num, byrow = TRUE)
comp$score_tv[comp$idx_na, ] <- 0
}
comp$par_tv[comp$idx_ok, ] <- matrix(comp$omega_vector, nrow = length(comp$idx_ok), ncol = info_par$par_num, byrow = TRUE)
if (any(model$m > 0L)) {
comp$par_tv[comp$idx_ok, ] <- comp$par_tv[comp$idx_ok, ] + sapply(1L:info_par$par_num, function(i) { comp$x[[i]][comp$idx_ok, , drop = FALSE] %*% comp$beta_list[[i]] })
}
cur_e <- rep(NA_real_, info_par$par_num)
for (j in comp$idx_ok_regular) {
for (i in 1:info_par$par_num) {
cur_e[i] <- sum(comp$par_tv[j - seq_along(comp$phi_list[[i]]), i] * comp$phi_list[[i]]) + sum(comp$score_tv[j - seq_along(comp$alpha_list[[i]]), i] * comp$alpha_list[[i]])
}
comp$par_tv[j, ] <- comp$par_tv[j, ] + cur_e
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
comp$score_tv[comp$idx_ok_ahead, ] <- 0
for (j in comp$idx_ok_ahead) {
for (i in 1:info_par$par_num) {
cur_e[i] <- sum(comp$par_tv[j - seq_along(comp$phi_list[[i]]), i] * comp$phi_list[[i]]) + sum(comp$score_tv[j - seq_along(comp$alpha_list[[i]]), i] * comp$alpha_list[[i]])
}
comp$par_tv[j, ] <- comp$par_tv[j, ] + cur_e
}
} else if (model$regress == "sep") {
comp$err_tv <- matrix(NA_real_, nrow = comp$full_num, ncol = info_par$par_num)
comp$err_init <- model$par_init
comp$par_init <- model$par_init
if (any(is.na(model$par_init))) {
comp$par_unc <- sapply(1:info_par$par_num, function(i) { (comp$omega_vector[i] + comp$average_x[[i]] %*% comp$beta_list[[i]]) })
comp$par_init[is.na(comp$par_init)] <- comp$par_unc[is.na(comp$par_init)]
comp$err_init[is.na(comp$err_init)] <- 0
}
if (length(comp$idx_na) > 0L) {
comp$err_tv[comp$idx_na, ] <- matrix(comp$err_init, nrow = length(comp$idx_na), ncol = info_par$par_num, byrow = TRUE)
comp$par_tv[comp$idx_na, ] <- matrix(comp$par_init, nrow = length(comp$idx_na), ncol = info_par$par_num, byrow = TRUE)
comp$score_tv[comp$idx_na, ] <- 0
}
comp$par_tv[comp$idx_ok, ] <- matrix(comp$omega_vector, nrow = length(comp$idx_ok), ncol = info_par$par_num, byrow = TRUE)
if (any(model$m > 0L)) {
comp$par_tv[comp$idx_ok, ] <- comp$par_tv[comp$idx_ok, ] + sapply(1L:info_par$par_num, function(i) { comp$x[[i]][comp$idx_ok, , drop = FALSE] %*% comp$beta_list[[i]] })
}
cur_e <- rep(NA_real_, info_par$par_num)
for (j in comp$idx_ok_regular) {
for (i in 1:info_par$par_num) {
cur_e[i] <- sum(comp$err_tv[j - seq_along(comp$phi_list[[i]]), i] * comp$phi_list[[i]]) + sum(comp$score_tv[j - seq_along(comp$alpha_list[[i]]), i] * comp$alpha_list[[i]])
}
comp$err_tv[j, ] <- cur_e
comp$par_tv[j, ] <- comp$par_tv[j, ] + cur_e
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
comp$score_tv[comp$idx_ok_ahead, ] <- 0
for (j in comp$idx_ok_ahead) {
for (i in 1:info_par$par_num) {
cur_e[i] <- sum(comp$err_tv[j - seq_along(comp$phi_list[[i]]), i] * comp$phi_list[[i]]) + sum(comp$score_tv[j - seq_along(comp$alpha_list[[i]]), i] * comp$alpha_list[[i]])
}
comp$err_tv[j, ] <- cur_e
}
comp$par_tv[comp$idx_ok_ahead, ] <- comp$par_tv[comp$idx_ok_ahead, ] + comp$err_tv[comp$idx_ok_ahead, ]
}
comp$y[comp$idx_ok_ahead, ] <- fun$mean(f = comp$par_tv[comp$idx_ok_ahead, , drop = FALSE])
info_data <- info_data(y = data$y, x = data$x)
data$y <- name_matrix(data$y, info_data$index_time, info_data$index_series, drop = c(FALSE, TRUE))
data$x <- name_list_of_matrices(data$x, info_par$par_names, info_data$index_time_list, info_data$index_vars_list, drop = c(FALSE, TRUE), zero = c(FALSE, TRUE))
info_data_ahead <- info_data(y = matrix(nrow = model$t_ahead, ncol = model$n), x = data$x_ahead, skip_t = model$t)
data$x_ahead <- name_list_of_matrices(data$x_ahead, info_par$par_names, info_data_ahead$index_time_list, info_data_ahead$index_vars_list, drop = c(FALSE, TRUE), zero = c(FALSE, TRUE))
forecast$y_ahead_mean <- name_matrix(comp$y[(comp$pre_num + model$t + 1L):comp$full_num, , drop = FALSE], info_data_ahead$index_time, info_data_ahead$index_series, drop = c(FALSE, TRUE))
forecast$par_tv_ahead_mean <- name_matrix(comp$par_tv[(comp$pre_num + model$t + 1L):comp$full_num, , drop = FALSE], info_data_ahead$index_time, info_par$par_names, drop = c(FALSE, TRUE))
forecast$score_tv_ahead_mean <- name_matrix(comp$score_tv[(comp$pre_num + model$t + 1L):comp$full_num, , drop = FALSE], info_data_ahead$index_time, info_par$par_names, drop = c(FALSE, TRUE))
} else if (forecast$method == "simulated_paths") {
comp$rep_ahead <- check_generic_positive_integer_scalar(arg = rep_ahead, arg_name = "rep_ahead")
comp$quant <- check_generic_probability_vector(arg = quant, arg_name = "quant")
comp$y_ahead_path <- array(NA_real_, dim = c(comp$rep_ahead, model$t_ahead, model$n))
comp$par_tv_ahead_path <- array(NA_real_, dim = c(comp$rep_ahead, model$t_ahead, info_par$par_num))
comp$score_tv_ahead_path <- array(NA_real_, dim = c(comp$rep_ahead, model$t_ahead, info_par$par_num))
if (all(model$p + model$q == 0L)) {
comp$par_init <- model$par_init
if (any(is.na(comp$par_init))) {
comp$par_unc <- sapply(1:info_par$par_num, function(i) { (comp$omega_vector[i] + comp$average_x[[i]] %*% comp$beta_list[[i]]) })
comp$par_init[is.na(comp$par_init)] <- comp$par_unc[is.na(comp$par_init)]
}
if (length(comp$idx_na) > 0L) {
comp$par_tv[comp$idx_na, ] <- matrix(comp$par_init, nrow = length(comp$idx_na), ncol = info_par$par_num, byrow = TRUE)
comp$score_tv[comp$idx_na, ] <- 0
}
comp$par_tv[comp$idx_ok, ] <- matrix(comp$omega_vector, nrow = length(comp$idx_ok), ncol = info_par$par_num, byrow = TRUE)
if (any(model$m > 0L)) {
comp$par_tv[comp$idx_ok, ] <- comp$par_tv[comp$idx_ok, ] + sapply(1L:info_par$par_num, function(i) { comp$x[[i]][comp$idx_ok_regular, , drop = FALSE] %*% comp$beta_list[[i]] })
}
for (j in comp$idx_ok_regular) {
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
for (a in 1:comp$rep_ahead) {
for (j in comp$idx_ok_ahead) {
comp$y[j, ] <- fun$random(t = 1L, f = comp$par_tv[j, , drop = FALSE])
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
comp$y_ahead_path[a, , ] <- comp$y[(comp$pre_num + model$t + 1L):comp$full_num, ]
comp$par_tv_ahead_path[a, , ] <- comp$par_tv[(comp$pre_num + model$t + 1L):comp$full_num, ]
comp$score_tv_ahead_path[a, , ] <- comp$score_tv[(comp$pre_num + model$t + 1L):comp$full_num, ]
}
} else if (model$regress == "joint") {
comp$par_init <- model$par_init
if (any(is.na(comp$par_init))) {
comp$par_unc <- sapply(1:info_par$par_num, function(i) { (comp$omega_vector[i] + comp$average_x[[i]] %*% comp$beta_list[[i]]) / (1 - sum(comp$phi_list[[i]])) })
comp$par_init[is.na(comp$par_init)] <- comp$par_unc[is.na(comp$par_init)]
}
if (length(comp$idx_na) > 0L) {
comp$par_tv[comp$idx_na, ] <- matrix(comp$par_init, nrow = length(comp$idx_na), ncol = info_par$par_num, byrow = TRUE)
comp$score_tv[comp$idx_na, ] <- 0
}
comp$par_tv[comp$idx_ok_regular, ] <- matrix(comp$omega_vector, nrow = length(comp$idx_ok_regular), ncol = info_par$par_num, byrow = TRUE)
if (any(model$m > 0L)) {
comp$par_tv[comp$idx_ok_regular, ] <- comp$par_tv[comp$idx_ok_regular, ] + sapply(1L:info_par$par_num, function(i) { comp$x[[i]][comp$idx_ok_regular, , drop = FALSE] %*% comp$beta_list[[i]] })
}
cur_e <- rep(NA_real_, info_par$par_num)
for (j in comp$idx_ok_regular) {
for (i in 1:info_par$par_num) {
cur_e[i] <- sum(comp$par_tv[j - seq_along(comp$phi_list[[i]]), i] * comp$phi_list[[i]]) + sum(comp$score_tv[j - seq_along(comp$alpha_list[[i]]), i] * comp$alpha_list[[i]])
}
comp$par_tv[j, ] <- comp$par_tv[j, ] + cur_e
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
for (a in 1:comp$rep_ahead) {
comp$par_tv[comp$idx_ok_ahead, ] <- matrix(comp$omega_vector, nrow = length(comp$idx_ok_ahead), ncol = info_par$par_num, byrow = TRUE)
if (any(model$m > 0L)) {
comp$par_tv[comp$idx_ok_ahead, ] <- comp$par_tv[comp$idx_ok_ahead, ] + sapply(1L:info_par$par_num, function(i) { comp$x[[i]][comp$idx_ok_ahead, , drop = FALSE] %*% comp$beta_list[[i]] })
}
cur_e <- rep(NA_real_, info_par$par_num)
for (j in comp$idx_ok_ahead) {
for (i in 1:info_par$par_num) {
cur_e[i] <- sum(comp$par_tv[j - seq_along(comp$phi_list[[i]]), i] * comp$phi_list[[i]]) + sum(comp$score_tv[j - seq_along(comp$alpha_list[[i]]), i] * comp$alpha_list[[i]])
}
comp$par_tv[j, ] <- comp$par_tv[j, ] + cur_e
comp$y[j, ] <- fun$random(t = 1L, f = comp$par_tv[j, , drop = FALSE])
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
comp$y_ahead_path[a, , ] <- comp$y[(comp$pre_num + model$t + 1L):comp$full_num, ]
comp$par_tv_ahead_path[a, , ] <- comp$par_tv[(comp$pre_num + model$t + 1L):comp$full_num, ]
comp$score_tv_ahead_path[a, , ] <- comp$score_tv[(comp$pre_num + model$t + 1L):comp$full_num, ]
}
} else if (model$regress == "sep") {
comp$err_tv <- matrix(NA_real_, nrow = comp$full_num, ncol = info_par$par_num)
comp$err_init <- model$par_init
comp$par_init <- model$par_init
if (any(is.na(model$par_init))) {
comp$par_unc <- sapply(1:info_par$par_num, function(i) { (comp$omega_vector[i] + comp$average_x[[i]] %*% comp$beta_list[[i]]) })
comp$par_init[is.na(comp$par_init)] <- comp$par_unc[is.na(comp$par_init)]
comp$err_init[is.na(comp$err_init)] <- 0
}
if (length(comp$idx_na) > 0L) {
comp$err_tv[comp$idx_na, ] <- matrix(comp$err_init, nrow = length(comp$idx_na), ncol = info_par$par_num, byrow = TRUE)
comp$par_tv[comp$idx_na, ] <- matrix(comp$par_init, nrow = length(comp$idx_na), ncol = info_par$par_num, byrow = TRUE)
comp$score_tv[comp$idx_na, ] <- 0
}
comp$par_tv[comp$idx_ok_regular, ] <- matrix(comp$omega_vector, nrow = length(comp$idx_ok_regular), ncol = info_par$par_num, byrow = TRUE)
if (any(model$m > 0L)) {
comp$par_tv[comp$idx_ok_regular, ] <- comp$par_tv[comp$idx_ok_regular, ] + sapply(1L:info_par$par_num, function(i) { comp$x[[i]][comp$idx_ok_regular, , drop = FALSE] %*% comp$beta_list[[i]] })
}
cur_e <- rep(NA_real_, info_par$par_num)
for (j in comp$idx_ok_regular) {
for (i in 1:info_par$par_num) {
cur_e[i] <- sum(comp$err_tv[j - seq_along(comp$phi_list[[i]]), i] * comp$phi_list[[i]]) + sum(comp$score_tv[j - seq_along(comp$alpha_list[[i]]), i] * comp$alpha_list[[i]])
}
comp$err_tv[j, ] <- cur_e
comp$par_tv[j, ] <- comp$par_tv[j, ] + cur_e
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
for (a in 1:comp$rep_ahead) {
comp$par_tv[comp$idx_ok_ahead, ] <- matrix(comp$omega_vector, nrow = length(comp$idx_ok_ahead), ncol = info_par$par_num, byrow = TRUE)
if (any(model$m > 0L)) {
comp$par_tv[comp$idx_ok_ahead, ] <- comp$par_tv[comp$idx_ok_ahead, ] + sapply(1L:info_par$par_num, function(i) { comp$x[[i]][comp$idx_ok_ahead, , drop = FALSE] %*% comp$beta_list[[i]] })
}
cur_e <- rep(NA_real_, info_par$par_num)
for (j in comp$idx_ok_ahead) {
for (i in 1:info_par$par_num) {
cur_e[i] <- sum(comp$err_tv[j - seq_along(comp$phi_list[[i]]), i] * comp$phi_list[[i]]) + sum(comp$score_tv[j - seq_along(comp$alpha_list[[i]]), i] * comp$alpha_list[[i]])
}
comp$err_tv[j, ] <- cur_e
comp$par_tv[j, ] <- comp$par_tv[j, ] + cur_e
comp$y[j, ] <- fun$random(t = 1L, f = comp$par_tv[j, , drop = FALSE])
comp$score_tv[j, ] <- fun$score(y = comp$y[j, , drop = FALSE], f = comp$par_tv[j, , drop = FALSE])
}
comp$y_ahead_path[a, , ] <- comp$y[(comp$pre_num + model$t + 1L):comp$full_num, ]
comp$par_tv_ahead_path[a, , ] <- comp$par_tv[(comp$pre_num + model$t + 1L):comp$full_num, ]
comp$score_tv_ahead_path[a, , ] <- comp$score_tv[(comp$pre_num + model$t + 1L):comp$full_num, ]
}
}
info_data <- info_data(y = data$y, x = data$x)
data$y <- name_matrix(data$y, info_data$index_time, info_data$index_series, drop = c(FALSE, TRUE))
data$x <- name_list_of_matrices(data$x, info_par$par_names, info_data$index_time_list, info_data$index_vars_list, drop = c(FALSE, TRUE), zero = c(FALSE, TRUE))
info_data_ahead <- info_data(y = matrix(nrow = model$t_ahead, ncol = model$n), x = data$x_ahead, skip_t = model$t)
data$x_ahead <- name_list_of_matrices(data$x_ahead, info_par$par_names, info_data_ahead$index_time_list, info_data_ahead$index_vars_list, drop = c(FALSE, TRUE), zero = c(FALSE, TRUE))
forecast$y_ahead_mean <- name_matrix(colMeans(comp$y_ahead_path, na.rm = TRUE), info_data_ahead$index_time, info_data_ahead$index_series, drop = c(FALSE, TRUE))
forecast$y_ahead_sd <- name_matrix(apply(comp$y_ahead_path, 2:3, stats::sd, na.rm = TRUE), info_data_ahead$index_time, info_data_ahead$index_series, drop = c(FALSE, TRUE))
forecast$y_ahead_quant <- name_3d_array(aperm(array(apply(comp$y_ahead_path, 2:3, stats::quantile, probs = comp$quant, na.rm = TRUE), dim = c(length(comp$quant), model$t_ahead, model$n)), c(2, 3, 1)), info_data_ahead$index_time, info_data_ahead$index_series, paste0(comp$quant * 100, "%"), drop = c(FALSE, TRUE, TRUE), zero = c(FALSE, FALSE, TRUE))
forecast$par_tv_ahead_mean <- name_matrix(colMeans(comp$par_tv_ahead_path, na.rm = TRUE), info_data_ahead$index_time, info_par$par_names, drop = c(FALSE, TRUE))
forecast$par_tv_ahead_sd <- name_matrix(apply(comp$par_tv_ahead_path, 2:3, stats::sd, na.rm = TRUE), info_data_ahead$index_time, info_par$par_names, drop = c(FALSE, TRUE))
forecast$par_tv_ahead_quant <- name_3d_array(aperm(array(apply(comp$par_tv_ahead_path, 2:3, stats::quantile, probs = comp$quant, na.rm = TRUE), dim = c(length(comp$quant), model$t_ahead, info_par$par_num)), c(2, 3, 1)), info_data_ahead$index_time, info_par$par_names, paste0(comp$quant * 100, "%"), drop = c(FALSE, TRUE, TRUE), zero = c(FALSE, FALSE, TRUE))
forecast$score_tv_ahead_mean <- name_matrix(colMeans(comp$score_tv_ahead_path, na.rm = TRUE), info_data_ahead$index_time, info_par$par_names, drop = c(FALSE, TRUE))
forecast$score_tv_ahead_sd <- name_matrix(apply(comp$score_tv_ahead_path, 2:3, stats::sd, na.rm = TRUE), info_data_ahead$index_time, info_par$par_names, drop = c(FALSE, TRUE))
forecast$score_tv_ahead_quant <- name_3d_array(aperm(array(apply(comp$score_tv_ahead_path, 2:3, stats::quantile, probs = comp$quant, na.rm = TRUE), dim = c(length(comp$quant), model$t_ahead, info_par$par_num)), c(2, 3, 1)), info_data_ahead$index_time, info_par$par_names, paste0(comp$quant * 100, "%"), drop = c(FALSE, TRUE, TRUE), zero = c(FALSE, FALSE, TRUE))
}
report <- list(data = data, model = model, forecast = forecast)
class(report) <- "gas_forecast"
return(report)
}
}
# ------------------------------------------------------------------------------
# Print Forecasts --------------------------------------------------------------
#' @export
print.gas_forecast <- function(x, ...) {
info_title <- info_title(distr = x$model$distr, param = x$model$param, scaling = x$model$scaling)
cat("GAS Model:", info_title$title, "\n")
cat("\n")
cat("Method:", switch(x$forecast$method, "mean_path" = "Mean Path", "simulated_paths" = "Simulated Paths"), "\n")
cat("\n")
cat("Forecasts: \n")
print(x$forecast$y_ahead_mean)
invisible(x)
}
# ------------------------------------------------------------------------------
# Summarize Forecasts ----------------------------------------------------------
#' @export
summary.gas_forecast <- function(object, ...) {
print(object)
cat("\n")
cat("Time-Varying Parameters:", "\n")
print(object$forecast$par_tv_ahead_mean)
invisible(object)
}
# ------------------------------------------------------------------------------
# Plot Forecasted Time Series ---------------------------------------------------
#' @importFrom dplyr %>%
#' @importFrom ggplot2 .data
#' @export
plot.gas_forecast <- function(x, ...) {
y <- x$data$y
y_fcst <- x$forecast$y_ahead_mean
if (is.vector(y)) {
y_full <- c(y, y_fcst)
ts_index <- 1:length(y_full)
ts_divide <- length(y) + 0.5
gg_data <- dplyr::tibble(index = ts_index, value = y_full)
gg_fig <- ggplot2::ggplot(gg_data, mapping = ggplot2::aes(.data$index, .data$value)) +
ggplot2::geom_vline(xintercept = ts_divide, linetype = "dotted") +
ggplot2::geom_line(color = "#800000") +
ggplot2::geom_point(color = "#800000") +
ggplot2::labs(title = "Forecasted Time Series", x = "Time Index", y = "Observation Value")
print(gg_fig)
gg_list <- list(gg_fig)
} else {
y_full <- rbind(y, y_fcst)
ser_names <- colnames(y_full)
ts_index <- 1:nrow(y_full)
ts_divide <- nrow(y) + 0.5
gg_col <- c(rep("#CCCCCC", times = ncol(y_full) - 1), "#800000")
gg_list <- list()
for (i in 1:length(ser_names)) {
gg_levels <- c(ser_names[-i], ser_names[i])
gg_data <- y_full %>%
dplyr::as_tibble() %>%
dplyr::mutate(index = ts_index) %>%
tidyr::pivot_longer(cols = -dplyr::last_col(), names_to = "ser", values_to = "value") %>%
dplyr::mutate(ser = factor(.data$ser, levels = gg_levels, ordered = TRUE)) %>%
dplyr::arrange(.data$ser)
gg_fig <- ggplot2::ggplot(gg_data, mapping = ggplot2::aes(.data$index, .data$value, group = .data$ser, color = .data$ser)) +
ggplot2::geom_vline(xintercept = ts_divide, linetype = "dotted") +
ggplot2::geom_line(show.legend = FALSE) +
ggplot2::geom_point(show.legend = FALSE) +
ggplot2::scale_colour_manual(values = gg_col) +
ggplot2::labs(title = paste("Forecasted Time Series", ser_names[i]), x = "Time Index", y = "Observation Value")
gg_list <- append(gg_list, list(gg_fig))
}
print(gg_list[[1]])
old_par <- grDevices::devAskNewPage(ask = TRUE)
for (i in 2:length(gg_list)) {
print(gg_list[[i]])
}
on.exit(grDevices::devAskNewPage(ask = old_par))
}
invisible(gg_list)
}
# ------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.