| summary.gekm | R Documentation |
Summarizing (Gradient-Enhanced) Kriging Models.
## S3 method for class 'gekm'
summary(object, scale = FALSE, ...)
## S3 method for class 'summary.gekm'
print(x, digits = 4L, ...)
object |
an object of class |
x |
an object of class |
scale |
|
digits |
number of digits to be used for the |
... |
further arguments passed to |
The summary method for an object of class "gekm" returns a list with the following components:
call |
the matched call of object. |
terms |
the |
coefficients |
a |
sigma |
the estimated (scaled) process standard deviation. |
df |
degrees of freedom, i.e. the number of observations used to fit the model minus the number of regression coefficients. |
cov.scaled |
the (scaled) covariance matrix of the estimated regression coefficients. |
covtype |
the name of the correlation function. |
theta |
the (estimated) correlation parameteres. |
Carmen van Meegen
Morris, M., Mitchell, T., and Ylvisaker, D. (1993). Bayesian Design and Analysis of Computer Experiments: Use of Derivatives in Surface Prediction. Technometrics, 35(3):243–255. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/00401706.1993.10485320")}.
Oakley, J. and O'Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution of Computer Model Outputs. Biometrika, 89(4):769–784. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1093/biomet/89.4.769")}.
Park, J.-S. and Beak, J. (2001). Efficient Computation of Maximum Likelihood Estimators in a Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences, 27(1):1–7. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/S0098-3004(00)00016-9")}.
Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The MIT Press. https://gaussianprocess.org/gpml/.
Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/0471725218")}.
Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of Computer Experiments. Statistical Science, 4(4):409–423. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1214/ss/1177012413")}.
Santner, T. J., Williams, B. J., and Notz, W. I. (2018). The Design and Analysis of Computer Experiments. 2nd edition. Springer-Verlag.
Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer-Verlag. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1007/978-1-4612-1494-6")}.
Zimmermann, R. (2015). On the Condition Number Anomaly of Gaussian Correlation Matrices. Linear Algebra and its Applications, 466:512-–526. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.laa.2014.10.038")}.
gekm for fitting a (gradient-enhanced) Kriging model.
coef for extracting the (matrix of) coefficients.
vcov for calculating the covaraince matrix of the regression coefficients.
confint for computing confidence intervals for the regression coefficients.
## 1-dimensional example: Oakley and O’Hagan (2002)
# Define test function and its gradient
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)
# Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)
y <- f(x)
dy <- fGrad(x)
dat <- data.frame(x, y)
deri <- data.frame(x = dy)
# Fit (gradient-enhanced) Kriging model
km.1d <- gekm(y ~ . + I(x^2), data = dat, covtype = "gaussian", theta = 1)
gekm.1d <- gekm(y ~ . + I(x^2), data = dat, deriv = deri, covtype = "gaussian", theta = 1)
# Model summaries
summary(km.1d)
summary(gekm.1d)
summary(gekm.1d, scale = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.