Nothing
### ###
### SUMMARY-METHOD FOR gekm ###
### ###
## summary.gekm - simulates Gaussian process path given an object
## of class gekm
##
## @param object: gekm[1]
## object of class gekm
## @param nsim: num[1]
## number of simulated paths to be generated
## @param seed: num[1]
## NULL
## @param newdata: data.frame[1]
##
## @param ...:
## further arguments, not used
##
## @output:
## invisible(x)
summary.gekm <- function(object, scale = FALSE, ...){
res <- object[c("call", "terms")]
p <- length(coef(object))
vcov.est <- vcov(object, scale = scale)
se <- sqrt(diag(vcov.est))
tval <- coef(object) / se
df <- nobs(object) - p
res$coefficients <- cbind("Estimate" = coef(object), "Std. Error" = se,
"t value" = tval, "Pr(>|t|)" = 2 * pt(abs(tval), df, lower.tail = FALSE))
res$sigma <- sigma(object, scale = scale)
res$df <- df
res$cov.scaled <- vcov.est
res$covtype <- object$covtype
res$theta <- object$theta
class(res) <- "summary.gekm"
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.