Nothing
#' Kernel regression version 2 with optional residuals and gradients
#' with regtype="ll" for local linear, bwmethod="cv.aic" for AIC-based
#' bandwidth selection.
#'
#' @param dep.y {Data on the dependent (response) variable}
#' @param reg.x {Data on the regressor (stimulus) variables}
#' @param tol {Tolerance on the position of located minima of the cross-validation
#' function (default =0.1)}
#' @param ftol {Fractional tolerance on the value of cross validation function
#' evaluated at local minima (default =0.1)}
#' @param gradients {Make this TRUE if gradients computations are desired}
#' @param residuals {Make this TRUE if residuals are desired}
#' @importFrom np npreg npregbw
#' @return Creates a model object `mod' containing the entire kernel regression output.
#' Type \code{names(mod)} to reveal the variety of outputs produced by `npreg' of the `np' package.
#' The user can access all of them at will by using the dollar notation of R.
#' @note This is version 2 ("ll","cv.aic") of a work horse for causal identification.
#' @author Prof. H. D. Vinod, Economics Dept., Fordham University, NY
#' @seealso See \code{\link{kern_ctrl}}.
#' @references Vinod, H. D.'Generalized Correlation and Kernel Causality with
#' Applications in Development Economics' in Communications in
#' Statistics -Simulation and Computation, 2015,
#' \doi{10.1080/03610918.2015.1122048}
#' @concept apd amorphous partial derivative
#' @concept kernel regression residuals
#' @concept kernel regression gradients
#' @examples
#'
#' \dontrun{
#' set.seed(34);x=matrix(sample(1:600)[1:50],ncol=2)
#' require(np); options(np.messages=FALSE)
#' k1=kern(x[,1],x[,2])
#' print(k1$R2) #prints the R square of the kernel regression
#' }
#'
#' @export
kern2 <- function(dep.y, reg.x, tol = 0.1, ftol = 0.1, gradients = FALSE, residuals = FALSE) {
gr = FALSE
resz = FALSE
if (gradients)
gr = TRUE
if (residuals)
resz = TRUE
# bandwidths for nonparametric regressions
bw = npregbw(ydat = as.vector(dep.y), xdat = reg.x,
tol = tol, ftol = ftol,regtype="ll", bwmethod="cv.aic" )
mod = npreg(bws = bw, gradients = gr, residuals = resz)
return(mod)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.