Nothing
context("delaunayn")
test_that("delaunayn produces the correct output", {
## Create points that, when passed to Qhull with the Qt option,
## would give degenerate simplices - thanks to Bill Denney for
## example
ps <- as.matrix(rbind(data.frame(a=0, b=0, d=0),
merge(merge(data.frame(a=c(-1, 1)),
data.frame(b=c(-1, 1))),
data.frame(d=c(-1, 1)))))
ts <- delaunayn(ps)
expect_type(ts, "integer")
expect_identical(dim(ts), c(12L, 4L))
## With output.options=TRUE, there should be a trinagulation, areas and
## neighbours and the sum of the ares should be 8
ts.full <- delaunayn(ps, output.options=TRUE)
expect_equal(ts, ts.full$tri, check.attributes=FALSE)
expect_equal(length(ts.full$areas), nrow(ts.full$tri))
expect_equal(length(ts.full$neighbours), nrow(ts.full$tri))
expect_equal(sum(ts.full$area), 8)
## With full output, there should be a trinagulation, areas and
## neighbours and the sum of the ares should be 8
## full will be deprecated in a future version
ts.full <- delaunayn(ps, full=TRUE)
expect_equal(ts, ts.full$tri, check.attributes=FALSE)
expect_equal(length(ts.full$areas), nrow(ts.full$tri))
expect_equal(length(ts.full$neighbours), nrow(ts.full$tri))
expect_equal(sum(ts.full$area), 8)
## tsearchn shouldn't return a "degnerate simplex" error.
expect_silent(tsearchn(ps, ts, cbind(1, 2, 4)))
## If the input matrix contains NAs, delaunayn should return an error
ps <- rbind(ps, NA)
expect_error(delaunayn(ps))
})
test_that("In the case of just one triangle, delaunayn returns a matrix", {
pc <- rbind(c(0, 0), c(0, 1), c(1, 0))
pct <- delaunayn(pc)
expect_type(pct, "integer")
expect_identical(dim(pct), c(1L, 3L))
## With no options it should also produce a triangulation. This
## mirrors the behaviour of octave and matlab
pct <- delaunayn(pc, "")
expect_type(pct, "integer")
expect_identical(dim(pct), c(1L, 3L))
pct.full <- delaunayn(pc, output.options=TRUE)
expect_equal(pct.full$areas, 0.5)
})
test_that("In the case of a degenerate triangle, delaunayn returns a matrix with zero rows", {
pc <- rbind(c(0, 0), c(0, 1), c(0, 2))
pct <- delaunayn(pc)
expect_type(pct, "integer")
expect_identical(dim(pct), c(0L, 3L))
pct.full <- delaunayn(pc, output.options=TRUE)
expect_equal(length(pct.full$areas), 0)
expect_equal(length(pct.full$neighbours), 0)
})
test_that("In the case of just one tetrahaedron, delaunayn returns a matrix", {
pc <- rbind(c(0, 0, 0), c(0, 1, 0), c(1, 0, 0), c(0, 0, 1))
pct <- delaunayn(pc)
expect_type(pct, "integer")
expect_identical(dim(pct), c(1L, 4L))
pct.full <- delaunayn(pc, output.options=TRUE)
expect_equal(pct.full$areas, 1/6)
})
test_that("Output to file works", {
ps <- matrix(rnorm(3000), ncol=3)
ps <- sqrt(3)*ps/drop(sqrt((ps^2) %*% rep(1, 3)))
fname <- path.expand(file.path(tempdir(), "test1.txt"))
pst <- delaunayn(ps, paste0("QJ TO '", fname, "'"))
expect_true(file.exists(fname))
})
test_that("The QJ option can give degenerate simplices", {
## Create degenerate simplex - thanks to Bill Denney for example
ps <- as.matrix(rbind(data.frame(a=0, b=0, d=0),
merge(merge(data.frame(a=c(-1, 1)),
data.frame(b=c(-1, 1))),
data.frame(d=c(-1, 1)))))
## The QJ option leads to on simplex being very small
ts <- delaunayn(ps, "QJ")
expect_warning(tsearchn(ps, ts, cbind(1, 2, 4)))
})
test_that("A square is triangulated", {
## This doesn't work if the Qz option isn't supplied
square <- rbind(c(0, 0), c(0, 1), c(1, 0), c(1, 1))
expect_equal(delaunayn(square), rbind(c(4, 2, 1),
c(4, 3, 1)),
check.attributes=FALSE)
expect_error(delaunayn(square, ""), "QH6239 Qhull precision error: initial Delaunay input sites are cocircular or cospherical")
})
test_that("No regression on issue 11: All points in a box far from the origin are triangulated", {
## Generate set of randomly generated points in a 40 unit square,
## 250,000 from the origin
set.seed(2)
p <- geometry::rbox(4000, D=2, 20) + 250000
## Triangulate
t <- delaunayn(p)
## Count how many of the points aren't in the triangulation - should be zero
expect_equal(length(setdiff(seq(1,nrow(p)), unique(c(t[,1], t[,2], t[,3])))),
0)
## Plotting: in the plot below, untriangulated points appear in red
## Basted on Jean-Romain's example in https://github.com/davidcsterratt/geometry/issues/11
## x <- p[,1]
## y <- p[,2]
## plot(x, y, cex = 0.1, col = "red")
## trimesh(t, x, y, add = T)
})
test_that("No regression on issue 12: All points in a small box with different x and y distances to the origin are triangulated", {
## Generate set of randomly generated points in a 40 unit square,
## with x distance of 5E5 from the origin and y distance 5E6 from
## the orgin. Note that the mean x and y values relative to the
## width of the window are quite different to each other.
set.seed(2)
p <- geometry::rbox(4000, D=2, 20) + 5E5
p[,2] <- p[,2] + 5E6
## Expect warnings without the correct options
expect_warning(delaunayn(p), "points missing from triangulation")
expect_warning(delaunayn(p, options="Qt Qc Qz Qbb"), "points missing from triangulation")
expect_warning(delaunayn(p, options="Qt Qc Qz QbB"), "points missing from triangulation")
## Centring the points does allow triangulation
p.centred <- cbind(p[,1] - mean(p[,1]),
p[,2] - mean(p[,2]))
delaunayn(p.centred)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.