calc_roc.rfsrc | R Documentation |
Receiver Operator Characteristic calculator
## S3 method for class 'rfsrc' calc_roc(object, dta, which_outcome = "all", oob = TRUE, ...)
object |
|
dta |
True response variable |
which_outcome |
If defined, only show ROC for this response. |
oob |
Use OOB estimates, the normal validation method (TRUE) |
... |
extra arguments passed to helper functions |
For a randomForestSRC prediction and the actual response value, calculate the specificity (1-False Positive Rate) and sensitivity (True Positive Rate) of a predictor.
This is a helper function for the gg_roc
functions, and
not intended for use by the end user.
A gg_roc
object
calc_auc
gg_roc
plot.gg_roc
## Taken from the gg_roc example rfsrc_iris <- rfsrc(Species ~ ., data = iris) gg_dta <- calc_roc(rfsrc_iris, rfsrc_iris$yvar, which_outcome=1, oob=TRUE) gg_dta <- calc_roc(rfsrc_iris, rfsrc_iris$yvar, which_outcome=1, oob=FALSE) rf_iris <- randomForest(Species ~ ., data = iris) gg_dta <- calc_roc(rf_iris, rf_iris$yvar, which_outcome=1) gg_dta <- calc_roc(rf_iris, rf_iris$yvar, which_outcome=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.