View source: R/plot.gg_variable.R
plot.gg_variable | R Documentation |
gg_variable
object,Plot a gg_variable
object,
## S3 method for class 'gg_variable' plot( x, xvar, time, time_labels, panel = FALSE, oob = TRUE, points = TRUE, smooth = TRUE, ... )
x |
|
xvar |
variable (or list of variables) of interest. |
time |
For survival, one or more times of interest |
time_labels |
string labels for times |
panel |
Should plots be faceted along multiple xvar? |
oob |
oob estimates (boolean) |
points |
plot the raw data points (boolean) |
smooth |
include a smooth curve (boolean) |
... |
arguments passed to the |
A single ggplot
object, or list of ggplot
objects
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.
## Not run: ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ ## -------- iris data ## iris #rfsrc_iris <- rfsrc(Species ~., data = iris) data(rfsrc_iris, package="ggRandomForests") gg_dta <- gg_variable(rfsrc_iris) plot(gg_dta, xvar="Sepal.Width") plot(gg_dta, xvar="Sepal.Length") ## !! TODO !! this needs to be corrected plot(gg_dta, xvar=rfsrc_iris$xvar.names, panel=TRUE, se=FALSE) ## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ ## -------- air quality data #rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality) data(rfsrc_airq, package="ggRandomForests") gg_dta <- gg_variable(rfsrc_airq) # an ordinal variable gg_dta[,"Month"] <- factor(gg_dta[,"Month"]) plot(gg_dta, xvar="Wind") plot(gg_dta, xvar="Temp") plot(gg_dta, xvar="Solar.R") plot(gg_dta, xvar=c("Solar.R", "Wind", "Temp", "Day"), panel=TRUE) plot(gg_dta, xvar="Month", notch=TRUE) ## -------- motor trend cars data #rfsrc_mtcars <- rfsrc(mpg ~ ., data = mtcars) data(rfsrc_mtcars, package="ggRandomForests") gg_dta <- gg_variable(rfsrc_mtcars) # mtcars$cyl is an ordinal variable gg_dta$cyl <- factor(gg_dta$cyl) gg_dta$am <- factor(gg_dta$am) gg_dta$vs <- factor(gg_dta$vs) gg_dta$gear <- factor(gg_dta$gear) gg_dta$carb <- factor(gg_dta$carb) plot(gg_dta, xvar="cyl") # Others are continuous plot(gg_dta, xvar="disp") plot(gg_dta, xvar="hp") plot(gg_dta, xvar="wt") # panel plot(gg_dta,xvar=c("disp","hp", "drat", "wt", "qsec"), panel=TRUE) plot(gg_dta, xvar=c("cyl", "vs", "am", "gear", "carb") ,panel=TRUE) ## -------- Boston data ## ------------------------------------------------------------ ## survival examples ## ------------------------------------------------------------ ## -------- veteran data ## survival data(veteran, package = "randomForestSRC") rfsrc_veteran <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100) # get the 1 year survival time. gg_dta <- gg_variable(rfsrc_veteran, time=90) # Generate variable dependance plots for age and diagtime plot(gg_dta, xvar = "age") plot(gg_dta, xvar = "diagtime") # Generate coplots plot(gg_dta, xvar = c("age", "diagtime"), panel=TRUE) # If we want to compare survival at different time points, say 30, 90 day # and 1 year gg_dta <- gg_variable(rfsrc_veteran, time=c(30, 90, 365)) # Generate variable dependance plots for age and diagtime plot(gg_dta, xvar = "age") plot(gg_dta, xvar = "diagtime") # Generate coplots plot(gg_dta, xvar = c("age", "diagtime"), panel=TRUE) ## -------- pbc data ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.