gg_rfsrc.rfsrc | R Documentation |
Extracts the predicted response values from the
rfsrc
object, and formats data for plotting
the response using plot.gg_rfsrc
.
## S3 method for class 'rfsrc' gg_rfsrc(object, oob = TRUE, by, ...)
object |
|
oob |
boolean, should we return the oob prediction , or the full forest prediction. |
by |
stratifying variable in the training dataset, defaults to NULL |
... |
extra arguments |
surv_type
("surv", "chf", "mortality", "hazard") for survival
forests
oob
boolean, should we return the oob prediction , or the full
forest prediction.
gg_rfsrc
object
plot.gg_rfsrc
rfsrc
plot.rfsrc
gg_survival
## ------------------------------------------------------------ ## classification example ## ------------------------------------------------------------ ## -------- iris data rfsrc_iris <- rfsrc(Species ~ ., data = iris) gg_dta<- gg_rfsrc(rfsrc_iris) plot(gg_dta) ## ------------------------------------------------------------ ## Regression example ## ------------------------------------------------------------ ## Not run: ## -------- air quality data rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute") gg_dta<- gg_rfsrc(rfsrc_airq) plot(gg_dta) ## End(Not run) ## -------- Boston data data(Boston, package = "MASS") Boston$chas <- as.logical(Boston$chas) rfsrc_boston <- rfsrc(medv ~ ., data = Boston, forest = TRUE, importance = TRUE, tree.err = TRUE, save.memory = TRUE) plot(gg_rfsrc(rfsrc_boston)) ### randomForest example data(Boston, package="MASS") rf_boston <- randomForest::randomForest(medv ~ ., data = Boston) plot(gg_rfsrc(rf_boston)) ## Not run: ## -------- mtcars data rfsrc_mtcars <- rfsrc(mpg ~ ., data = mtcars) gg_dta<- gg_rfsrc(rfsrc_mtcars) plot(gg_dta) ## End(Not run) ## ------------------------------------------------------------ ## Survival example ## ------------------------------------------------------------ ## Not run: ## -------- veteran data ## randomized trial of two treatment regimens for lung cancer data(veteran, package = "randomForestSRC") rfsrc_veteran <- rfsrc(Surv(time, status) ~ ., data = veteran, ntree = 100) gg_dta <- gg_rfsrc(rfsrc_veteran) plot(gg_dta) gg_dta <- gg_rfsrc(rfsrc_veteran, conf.int=.95) plot(gg_dta) gg_dta <- gg_rfsrc(rfsrc_veteran, by="trt") plot(gg_dta) ## -------- pbc data ## We don't run this because of bootstrap confidence limits # We need to create this dataset data(pbc, package = "randomForestSRC",) # For whatever reason, the age variable is in days... makes no sense to me for (ind in seq_len(dim(pbc)[2])) { if (!is.factor(pbc[, ind])) { if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) { if (sum(range(pbc[, ind], na.rm = TRUE) == c(0, 1)) == 2) { pbc[, ind] <- as.logical(pbc[, ind]) } } } else { if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) { if (sum(sort(unique(pbc[, ind])) == c(0, 1)) == 2) { pbc[, ind] <- as.logical(pbc[, ind]) } if (sum(sort(unique(pbc[, ind])) == c(FALSE, TRUE)) == 2) { pbc[, ind] <- as.logical(pbc[, ind]) } } } if (!is.logical(pbc[, ind]) & length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 5) { pbc[, ind] <- factor(pbc[, ind]) } } #Convert age to years pbc$age <- pbc$age / 364.24 pbc$years <- pbc$days / 364.24 pbc <- pbc[, -which(colnames(pbc) == "days")] pbc$treatment <- as.numeric(pbc$treatment) pbc$treatment[which(pbc$treatment == 1)] <- "DPCA" pbc$treatment[which(pbc$treatment == 2)] <- "placebo" pbc$treatment <- factor(pbc$treatment) dta_train <- pbc[-which(is.na(pbc$treatment)), ] # Create a test set from the remaining patients pbc_test <- pbc[which(is.na(pbc$treatment)), ] #======== # build the forest: rfsrc_pbc <- randomForestSRC::rfsrc( Surv(years, status) ~ ., dta_train, nsplit = 10, na.action = "na.impute", forest = TRUE, importance = TRUE, save.memory = TRUE ) gg_dta <- gg_rfsrc(rfsrc_pbc) plot(gg_dta) gg_dta <- gg_rfsrc(rfsrc_pbc, conf.int=.95) plot(gg_dta) gg_dta <- gg_rfsrc(rfsrc_pbc, by="treatment") plot(gg_dta) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.