View source: R/plot.gg_error.R
plot.gg_error | R Documentation |
gg_error
objectA plot of the cumulative OOB error rates of the random forest as a function of number of trees.
## S3 method for class 'gg_error' plot(x, ...)
x |
gg_error object created from a |
... |
extra arguments passed to |
The gg_error plot is used to track the convergence of the
randomForest. This figure is a reproduction of the error plot
from the plot.rfsrc
function.
ggplot
object
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.
gg_error
rfsrc
plot.rfsrc
## Not run: ## Examples from RFSRC package... ## ------------------------------------------------------------ ## classification example ## ------------------------------------------------------------ ## ------------- iris data ## You can build a randomForest rfsrc_iris <- rfsrc(Species ~ ., data = iris, tree.err = TRUE) # Get a data.frame containing error rates gg_dta <- gg_error(rfsrc_iris) # Plot the gg_error object plot(gg_dta) ## RandomForest example rf_iris <- randomForest::randomForest(Species ~ ., data = iris, tree.err = TRUE, ) gg_dta <- gg_error(rf_iris) plot(gg_dta) gg_dta <- gg_error(rf_iris, training=TRUE) plot(gg_dta) ## ------------------------------------------------------------ ## Regression example ## ------------------------------------------------------------ ## ------------- airq data rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute", tree.err = TRUE, ) # Get a data.frame containing error rates gg_dta <- gg_error(rfsrc_airq) # Plot the gg_error object plot(gg_dta) ## ------------- Boston data data(Boston, package = "MASS") Boston$chas <- as.logical(Boston$chas) rfsrc_boston <- rfsrc(medv ~ ., data = Boston, forest = TRUE, importance = TRUE, tree.err = TRUE, save.memory = TRUE) # Get a data.frame containing error rates gg_dta<- gg_error(rfsrc_boston) # Plot the gg_error object plot(gg_dta) ## ------------- mtcars data rfsrc_mtcars <- rfsrc(mpg ~ ., data = mtcars, tree.err = TRUE) # Get a data.frame containing error rates gg_dta<- gg_error(rfsrc_mtcars) # Plot the gg_error object plot(gg_dta) ## ------------------------------------------------------------ ## Survival example ## ------------------------------------------------------------ ## ------------- veteran data ## randomized trial of two treatment regimens for lung cancer data(veteran, package = "randomForestSRC") rfsrc_veteran <- rfsrc(Surv(time, status) ~ ., data = veteran, tree.err = TRUE) gg_dta <- gg_error(rfsrc_veteran) plot(gg_dta) ## ------------- pbc data # Load a cached randomForestSRC object # We need to create this dataset data(pbc, package = "randomForestSRC",) # For whatever reason, the age variable is in days... makes no sense to me for (ind in seq_len(dim(pbc)[2])) { if (!is.factor(pbc[, ind])) { if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) { if (sum(range(pbc[, ind], na.rm = TRUE) == c(0, 1)) == 2) { pbc[, ind] <- as.logical(pbc[, ind]) } } } else { if (length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 2) { if (sum(sort(unique(pbc[, ind])) == c(0, 1)) == 2) { pbc[, ind] <- as.logical(pbc[, ind]) } if (sum(sort(unique(pbc[, ind])) == c(FALSE, TRUE)) == 2) { pbc[, ind] <- as.logical(pbc[, ind]) } } } if (!is.logical(pbc[, ind]) & length(unique(pbc[which(!is.na(pbc[, ind])), ind])) <= 5) { pbc[, ind] <- factor(pbc[, ind]) } } #Convert age to years pbc$age <- pbc$age / 364.24 pbc$years <- pbc$days / 364.24 pbc <- pbc[, -which(colnames(pbc) == "days")] pbc$treatment <- as.numeric(pbc$treatment) pbc$treatment[which(pbc$treatment == 1)] <- "DPCA" pbc$treatment[which(pbc$treatment == 2)] <- "placebo" pbc$treatment <- factor(pbc$treatment) dta_train <- pbc[-which(is.na(pbc$treatment)), ] # Create a test set from the remaining patients pbc_test <- pbc[which(is.na(pbc$treatment)), ] #======== # build the forest: rfsrc_pbc <- randomForestSRC::rfsrc( Surv(years, status) ~ ., dta_train, nsplit = 10, na.action = "na.impute", tree.err = TRUE, forest = TRUE, importance = TRUE, save.memory = TRUE ) gg_dta <- gg_error(rfsrc_pbc) plot(gg_dta) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.