plot.gg_roc | R Documentation |
gg_roc
object.ROC plot generic function for a gg_roc
object.
## S3 method for class 'gg_roc' plot(x, which_outcome = NULL, ...)
x |
|
which_outcome |
for multiclass problems, choose the class for plotting |
... |
arguments passed to the |
ggplot
object of the ROC curve
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.
gg_roc
rfsrc
## Not run: ## ------------------------------------------------------------ ## classification example ## ------------------------------------------------------------ ## -------- iris data #rfsrc_iris <- rfsrc(Species ~ ., data = iris) data(rfsrc_iris, package="ggRandomForests") # ROC for setosa gg_dta <- gg_roc(rfsrc_iris, which_outcome=1) plot.gg_roc(gg_dta) # ROC for versicolor gg_dta <- gg_roc(rfsrc_iris, which_outcome=2) plot.gg_roc(gg_dta) # ROC for virginica gg_dta <- gg_roc(rfsrc_iris, which_outcome=3) plot.gg_roc(gg_dta) # Alternatively, you can plot all three outcomes in one go # by calling the plot function on the forest object. plot.gg_roc(rfsrc_iris) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.