View source: R/plot.gg_partial.R
plot.gg_partial | R Documentation |
gg_partial
object.Generate a risk adjusted (partial) variable dependence plot.
The function plots the rfsrc
response variable
(y-axis) against the covariate of interest (specified when creating the
gg_partial
object).
## S3 method for class 'gg_partial' plot(x, points = TRUE, error = c("none", "shade", "bars", "lines"), ...)
x |
|
points |
plot points (boolean) or a smooth line. |
error |
"shade", "bars", "lines" or "none" |
... |
extra arguments passed to |
ggplot
object
Breiman L. (2001). Random forests, Machine Learning, 45:5-32.
Ishwaran H. and Kogalur U.B. (2007). Random survival forests for R, Rnews, 7(2):25-31.
Ishwaran H. and Kogalur U.B. (2013). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.4.
plot.variable
gg_partial
plot.gg_partial_list
gg_variable
plot.gg_variable
## Not run: ## ------------------------------------------------------------ ## classification ## ------------------------------------------------------------ ## -------- iris data ## iris "Petal.Width" partial dependence plot ## # rfsrc_iris <- rfsrc(Species ~., data = iris) # partial_iris <- plot.variable(rfsrc_iris, xvar.names = "Petal.Width", # partial=TRUE) data(partial_iris, package="ggRandomForests") gg_dta <- gg_partial(partial_iris) plot(gg_dta) ## ------------------------------------------------------------ ## regression ## ------------------------------------------------------------ ## -------- air quality data ## airquality "Wind" partial dependence plot ## # rfsrc_airq <- rfsrc(Ozone ~ ., data = airquality) # partial_airq <- plot.variable(rfsrc_airq, xvar.names = "Wind", # partial=TRUE, show.plot=FALSE) data(partial_airq, package="ggRandomForests") gg_dta <- gg_partial(partial_airq) plot(gg_dta) gg_dta.m <- gg_dta[["Month"]] plot(gg_dta.m, notch=TRUE) gg_dta[["Month"]] <- NULL plot(gg_dta, panel=TRUE) ## -------- Boston data data(partial_boston, package="ggRandomForests") gg_dta <- gg_partial(partial_boston) plot(gg_dta) plot(gg_dta, panel=TRUE) ## -------- mtcars data data(partial_mtcars, package="ggRandomForests") gg_dta <- gg_partial(partial_mtcars) plot(gg_dta) gg_dta.cat <- gg_dta gg_dta.cat[["disp"]] <- gg_dta.cat[["wt"]] <- gg_dta.cat[["hp"]] <- NULL gg_dta.cat[["drat"]] <- gg_dta.cat[["carb"]] <- gg_dta.cat[["qsec"]] <- NULL plot(gg_dta.cat, panel=TRUE) gg_dta[["cyl"]] <- gg_dta[["vs"]] <- gg_dta[["am"]] <- NULL gg_dta[["gear"]] <- NULL plot(gg_dta, panel=TRUE) ## ------------------------------------------------------------ ## survival examples ## ------------------------------------------------------------ ## -------- veteran data ## survival "age" partial variable dependence plot ## # data(veteran, package = "randomForestSRC") # rfsrc_veteran <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, # ntree = 100) # ## 30 day partial plot for age # partial_veteran <- plot.variable(rfsrc_veteran, surv.type = "surv", # partial = TRUE, time=30, # xvar.names = "age", # show.plots=FALSE) data(partial_veteran, package="ggRandomForests") gg_dta <- gg_partial(partial_veteran[[1]]) plot(gg_dta) gg_dta.cat <- gg_dta gg_dta[["celltype"]] <- gg_dta[["trt"]] <- gg_dta[["prior"]] <- NULL plot(gg_dta, panel=TRUE) gg_dta.cat[["karno"]] <- gg_dta.cat[["diagtime"]] <- gg_dta.cat[["age"]] <- NULL plot(gg_dta.cat, panel=TRUE, notch=TRUE) gg_dta <- lapply(partial_veteran, gg_partial) length(gg_dta) gg_dta <- combine.gg_partial(gg_dta[[1]], gg_dta[[2]] ) plot(gg_dta[["karno"]]) plot(gg_dta[["celltype"]]) gg_dta.cat <- gg_dta gg_dta[["celltype"]] <- gg_dta[["trt"]] <- gg_dta[["prior"]] <- NULL plot(gg_dta, panel=TRUE) gg_dta.cat[["karno"]] <- gg_dta.cat[["diagtime"]] <- gg_dta.cat[["age"]] <- NULL plot(gg_dta.cat, panel=TRUE, notch=TRUE) ## -------- pbc data ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.