Nothing
skip_on_cran()
skip_on_os(c("mac", "solaris"))
skip_if_not_installed("sandwich")
test_that("ggpredict, vcov can be own function", {
# example taken from "?clubSandwich::vcovCR"
m <- 8
cluster <- factor(rep(LETTERS[1:m], 3 + rpois(m, 5)))
n <- length(cluster)
X <- matrix(rnorm(3 * n), n, 3)
nu <- rnorm(m)[cluster]
e <- rnorm(n)
y <- X %*% c(0.4, 0.3, -0.3) + nu + e
dat <- data.frame(y, X, cluster, row = 1:n)
# fit linear model
model_vcov <- lm(y ~ X1 + X2 + X3, data = dat)
out1 <- ggpredict(model_vcov, "X1", vcov_fun = "vcovHC", vcov_type = "HC0")
out2 <- ggpredict(model_vcov, "X1", vcov_fun = sandwich::vcovHC, vcov_args = list(type = "HC0"))
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4)
expect_message(
ggeffect(model_vcov, "X1", vcov_fun = "vcovHC", vcov_type = "HC0"),
"The following arguments are not supported"
)
# test clubsandwich
skip_if_not_installed("clubSandwich")
out1 <- ggpredict(
model_vcov, "X1",
vcov_fun = "vcovCR", vcov_type = "CR0",
vcov_args = list(cluster = dat$cluster)
)
out2 <- ggpredict(model_vcov, "X1", vcov_fun = "CR0", vcov_args = list(cluster = dat$cluster))
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4)
})
test_that("ggemmeans, vcov can be own function", {
skip_if_not_installed("emmeans")
# example taken from "?clubSandwich::vcovCR"
set.seed(1234)
m <- 8
cluster <- factor(rep(LETTERS[1:m], 3 + rpois(m, 5)))
n <- length(cluster)
X <- matrix(rnorm(3 * n), n, 3)
nu <- rnorm(m)[cluster]
e <- rnorm(n)
y <- X %*% c(0.4, 0.3, -0.3) + nu + e
dat <- data.frame(y, X, cluster, row = 1:n)
# fit linear model
model_vcov <- lm(y ~ X1 + X2 + X3, data = dat)
out1 <- ggemmeans(model_vcov, "X1", vcov_fun = "vcovHC", vcov_type = "HC0")
out2 <- ggemmeans(model_vcov, "X1", vcov_fun = sandwich::vcovHC, vcov_args = list(type = "HC0"))
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4)
out3 <- ggemmeans(model_vcov, "X1", vcov_fun = sandwich::vcovHC(model_vcov, type = "HC0"))
expect_equal(
out3$conf.low,
c(
-0.99269, -0.72491, -0.47334, -0.25747, -0.11929, -0.0971,
-0.16364, -0.27276, -0.40091, -0.53844, -0.68113
),
tolerance = 1e-4
)
data(iris)
fit <- lm(Sepal.Length ~ Species, data = iris)
out <- predict_response(fit, terms = "Species", margin = "marginalmeans")
expect_equal(out$conf.low, c(4.86213, 5.79213, 6.44413), tolerance = 1e-4)
out <- predict_response(fit, terms = "Species", vcov_fun = "vcovHC", vcov_type = "HC1", margin = "marginalmeans")
expect_equal(out$conf.low, c(4.906485, 5.790275, 6.408479), tolerance = 1e-4)
})
test_that("ggpredict, CI based on robust SE", {
data(iris)
fit <- lm(Sepal.Length ~ Species, data = iris)
out <- ggpredict(fit, terms = "Species", vcov_fun = "vcovHC", vcov_type = "HC1")
expect_equal(out$conf.low, c(4.90749, 5.79174, 6.41028), tolerance = 1e-4)
out2 <- ggpredict(fit, terms = "Species", vcov_fun = "HC1")
expect_equal(out$conf.low, out2$conf.low, tolerance = 1e-4)
})
test_that("ggemmeans and clubsandwich", {
skip_if_not_installed("emmeans")
skip_if_not_installed("clubSandwich")
data(mtcars)
fit <- lm(mpg ~ hp + as.factor(cyl), data = mtcars)
mtcars$gear <- as.factor(mtcars$gear)
out <- ggemmeans(
fit,
terms = "cyl",
vcov_fun = clubSandwich::vcovCR(fit, type = "CR0", cluster = mtcars$gear)
)
expect_equal(out$conf.low, c(21.60913, 17.71294, 14.6084), tolerance = 1e-4)
})
skip_if_not_installed("marginaleffects")
test_that("ggaverage, CI based on robust SE", {
data(iris)
fit <- lm(Sepal.Length ~ Species, data = iris)
out <- predict_response(fit, terms = "Species", margin = "ame")
expect_equal(out$conf.low, c(4.86213, 5.79213, 6.44413), tolerance = 1e-4)
out <- predict_response(fit, terms = "Species", vcov_fun = "vcovHC", vcov_type = "HC1", margin = "ame")
expect_equal(out$conf.low, c(4.90749, 5.79174, 6.41028), tolerance = 1e-4)
out <- ggaverage(fit, terms = "Species", vcov_fun = "vcovHC", vcov_type = "HC1")
expect_equal(out$conf.low, c(4.90749, 5.79174, 6.41028), tolerance = 1e-4)
})
test_that("ggaverage, hypothesis test, robust SE", {
data(iris)
fit <- lm(Sepal.Length ~ Species, data = iris)
# no robust vcov
pr <- predict_response(fit, terms = "Species", margin = "ame")
out1 <- hypothesis_test(pr)
out2 <- hypothesis_test(fit, "Species")
expect_equal(out1$Contrast, out2$Contrast, tolerance = 1e-4)
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4)
# passing via dots works
out3 <- hypothesis_test(pr, vcov = vcov(fit))
expect_equal(out1$conf.low, out3$conf.low, tolerance = 1e-4)
out_later <- hypothesis_test(pr, vcov = "HC1")
# robust vcov
pr <- predict_response(fit, terms = "Species", vcov_fun = "HC1", margin = "ame")
out1 <- hypothesis_test(pr)
out2 <- hypothesis_test(fit, "Species", vcov_fun = "HC1")
out3 <- hypothesis_test(fit, "Species", vcov = "HC1")
expect_equal(out1$Contrast, out2$Contrast, tolerance = 1e-4)
expect_equal(out1$Contrast, out3$Contrast, tolerance = 1e-4)
expect_equal(out1$conf.low, out2$conf.low, tolerance = 1e-4)
expect_equal(out1$conf.low, out3$conf.low, tolerance = 1e-4)
expect_equal(out1$conf.low, out_later$conf.low, tolerance = 1e-4)
# johnson-neymann
data(efc, package = "ggeffects")
efc$c172code <- as.factor(efc$c172code)
fit <- lm(neg_c_7 ~ c12hour * barthtot * c172code, data = efc)
pr <- predict_response(fit, c("c12hour", "barthtot"), margin = "ame")
out1 <- johnson_neyman(pr)
expect_equal(attributes(out1)$intervals$pos_lower, 47, tolerance = 1e-3)
# robust vcov
pr <- predict_response(fit, c("c12hour", "barthtot"), vcov_fun = "HC1", margin = "ame")
out2 <- johnson_neyman(pr)
out3 <- johnson_neyman(pr, vcov_fun = "HC1")
expect_equal(attributes(out2)$intervals$pos_lower, 44.6, tolerance = 1e-3)
expect_equal(attributes(out2)$intervals$pos_lower, attributes(out3)$intervals$pos_lower, tolerance = 1e-3)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.