R/ggbarstats.R

Defines functions grouped_ggbarstats ggbarstats

Documented in ggbarstats grouped_ggbarstats

#' @title Stacked bar charts with statistical tests
#' @name ggbarstats
#'
#' @description
#'
#' Bar charts for categorical data with statistical details included in the plot
#' as a subtitle.
#'
#' @section Summary of graphics:
#'
#' ```{r child="man/rmd-fragments/ggbarstats_graphics.Rmd"}
#' ```
#'
#' @inheritParams ggpiestats
#' @inheritParams ggbetweenstats
#' @param sample.size.label.args Additional aesthetic arguments that will be passed to
#'   `ggplot2::geom_text()`.
#'
#' @inheritSection statsExpressions::contingency_table Contingency table analyses
#'
#' @seealso \code{\link{grouped_ggbarstats}}, \code{\link{ggpiestats}},
#'  \code{\link{grouped_ggpiestats}}
#'
#' @inherit ggpiestats return details
#'
#' @autoglobal
#'
#' @examplesIf identical(Sys.getenv("NOT_CRAN"), "true")
#' # for reproducibility
#' set.seed(123)
#'
#' # creating a plot
#' p <- ggbarstats(mtcars, x = vs, y = cyl)
#'
#' # looking at the plot
#' p
#'
#' # extracting details from statistical tests
#' extract_stats(p)
#' @export
ggbarstats <- function(
    data,
    x,
    y,
    counts = NULL,
    type = "parametric",
    paired = FALSE,
    results.subtitle = TRUE,
    label = "percentage",
    label.args = list(alpha = 1.0, fill = "white"),
    sample.size.label.args = list(size = 4.0),
    digits = 2L,
    proportion.test = results.subtitle,
    digits.perc = 0L,
    bf.message = TRUE,
    ratio = NULL,
    conf.level = 0.95,
    sampling.plan = "indepMulti",
    fixed.margin = "rows",
    prior.concentration = 1.0,
    title = NULL,
    subtitle = NULL,
    caption = NULL,
    legend.title = NULL,
    xlab = NULL,
    ylab = NULL,
    ggtheme = ggstatsplot::theme_ggstatsplot(),
    package = "RColorBrewer",
    palette = "Dark2",
    ggplot.component = NULL,
    ...) {
  # data frame ------------------------------------------

  # make sure both quoted and unquoted arguments are allowed
  c(x, y) %<-% c(ensym(x), ensym(y))
  type <- stats_type_switch(type)

  data %<>%
    select({{ x }}, {{ y }}, .counts = {{ counts }}) %>%
    tidyr::drop_na()

  # untable the data frame based on the count for each observation
  if (".counts" %in% names(data)) data %<>% tidyr::uncount(weights = .counts)

  # x and y need to be a factor
  data %<>% mutate(across(.cols = everything(), .fns = ~ as.factor(.x)))

  # TO DO: until one-way table is supported by `BayesFactor`
  if (nlevels(pull(data, {{ y }})) == 1L) c(bf.message, proportion.test) %<-% c(FALSE, FALSE)
  if (type == "bayes") proportion.test <- FALSE

  # statistical analysis ------------------------------------------

  if (results.subtitle) {
    .f.args <- list(
      data = data,
      x = {{ x }},
      y = {{ y }},
      conf.level = conf.level,
      digits = digits,
      paired = paired,
      ratio = ratio,
      sampling.plan = sampling.plan,
      fixed.margin = fixed.margin,
      prior.concentration = prior.concentration
    )

    subtitle_df <- .eval_f(contingency_table, !!!.f.args, type = type)
    subtitle <- .extract_expression(subtitle_df)

    # Bayes Factor caption
    if (type != "bayes" && bf.message && isFALSE(paired)) {
      caption_df <- .eval_f(contingency_table, !!!.f.args, type = "bayes")
      caption <- .extract_expression(caption_df)
    }
  }

  # plot ------------------------------------------

  # data frame with summary labels
  descriptive_df <- descriptive_data(data, {{ x }}, {{ y }}, label, digits.perc)

  # data frame containing all details needed for prop test
  onesample_df <- onesample_data(data, {{ x }}, {{ y }}, digits)

  # if no. of factor levels is greater than the default palette color count
  .is_palette_sufficient(package, palette, nlevels(pull(data, {{ x }})))

  plotBar <- ggplot(descriptive_df, aes({{ y }}, perc, fill = {{ x }})) +
    geom_bar(stat = "identity", position = "fill", color = "black") +
    scale_y_continuous(
      labels       = ~ insight::format_percent(., digits = 0L),
      breaks       = seq(from = 0.0, to = 1.0, by = 0.10),
      minor_breaks = seq(from = 0.05, to = 0.95, by = 0.10)
    ) +
    exec(
      geom_label,
      mapping  = aes(label = .label, group = {{ x }}),
      position = position_fill(vjust = 0.5),
      !!!label.args
    ) +
    ggtheme +
    theme(panel.grid.major.x = element_blank()) +
    guides(fill = guide_legend(title = legend.title %||% as_name(x))) +
    paletteer::scale_fill_paletteer_d(paste0(package, "::", palette), name = "")

  # proportion test ------------------------------------------

  if (isTRUE(proportion.test)) {
    plotBar <- plotBar +
      geom_text(
        data    = onesample_df,
        mapping = aes(x = {{ y }}, y = 1.05, label = .p.label, fill = NULL),
        size    = 2.8,
        parse   = TRUE
      )
  }

  # sample size -------------------------------------------------

  plotBar <- plotBar +
    exec(
      geom_text,
      data    = onesample_df,
      mapping = aes(x = {{ y }}, y = -0.05, label = N, fill = NULL),
      !!!sample.size.label.args
    )

  # annotations ------------------------------------------

  plotBar +
    labs(
      x        = xlab %||% as_name(y),
      y        = ylab,
      subtitle = subtitle,
      title    = title,
      caption  = caption
    ) +
    ggplot.component
}

#' @title Grouped bar charts with statistical tests
#' @name grouped_ggbarstats
#'
#' @description
#'
#' Helper function for `ggstatsplot::ggbarstats()` to apply this function across
#' multiple levels of a given factor and combining the resulting plots using
#' `ggstatsplot::combine_plots()`.
#'
#' @inheritParams ggbarstats
#' @inheritParams grouped_ggbetweenstats
#' @inheritDotParams ggbarstats -title
#'
#' @seealso \code{\link{ggbarstats}}, \code{\link{ggpiestats}},
#'  \code{\link{grouped_ggpiestats}}
#'
#' @inherit ggbarstats return references
#' @inherit ggbarstats return details
#' @inherit ggbarstats return return
#'
#' @autoglobal
#'
#' @examplesIf identical(Sys.getenv("NOT_CRAN"), "true")
#' # for reproducibility
#' set.seed(123)
#' library(dplyr, warn.conflicts = FALSE)
#'
#' # let's create a smaller data frame first
#' diamonds_short <- ggplot2::diamonds %>%
#'   filter(cut %in% c("Very Good", "Ideal")) %>%
#'   filter(clarity %in% c("SI1", "SI2", "VS1", "VS2")) %>%
#'   sample_frac(size = 0.05)
#'
#' grouped_ggbarstats(
#'   data          = diamonds_short,
#'   x             = color,
#'   y             = clarity,
#'   grouping.var  = cut,
#'   plotgrid.args = list(nrow = 2)
#' )
#' @export
grouped_ggbarstats <- function(
    data,
    ...,
    grouping.var,
    plotgrid.args = list(),
    annotation.args = list()) {
  .grouped_list(data, {{ grouping.var }}) %>%
    purrr::pmap(.f = ggbarstats, ...) %>%
    combine_plots(plotgrid.args, annotation.args)
}

Try the ggstatsplot package in your browser

Any scripts or data that you put into this service are public.

ggstatsplot documentation built on Sept. 11, 2024, 7:48 p.m.