Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----echo = FALSE, results = 'hide'-------------------------------------------
library(gimap)
## ----eval = FALSE-------------------------------------------------------------
# output_dir <- "output_treatment"
# dir.create(output_dir, showWarnings = FALSE)
## ----eval = FALSE-------------------------------------------------------------
# example_data <- get_example_data("count_treatment")
## ----eval = FALSE-------------------------------------------------------------
# colnames(example_data)
## ----eval = FALSE-------------------------------------------------------------
# counts <- example_data %>%
# select(c("pretreatment", "dmsoA", "dmsoB", "drug1A", "drug1B")) %>%
# as.matrix()
## ----eval = FALSE-------------------------------------------------------------
# pg_ids <- example_data %>%
# dplyr::select("id")
## ----eval = FALSE-------------------------------------------------------------
# sample_metadata <- data.frame(
# col_names = c("pretreatment", "dmsoA", "dmsoB", "drug1A", "drug1B"),
# drug_treatment = as.factor(c("pretreatment", "dmso", "dmso", "drug", "drug"))
# )
## ----eval = FALSE-------------------------------------------------------------
# gimap_dataset <- setup_data(
# counts = counts,
# pg_ids = pg_ids,
# sample_metadata = sample_metadata
# )
## ----eval = FALSE-------------------------------------------------------------
# str(gimap_dataset)
## ----eval = FALSE-------------------------------------------------------------
# nrow(gimap_dataset$transformed_data$log2_cpm)
## ----eval = FALSE-------------------------------------------------------------
# run_qc(gimap_dataset,
# output_file = file.path(output_dir, "example_qc_report.Rmd"),
# overwrite = TRUE,
# plots_dir = "plots",
# quiet = TRUE
# )
## ----eval = FALSE-------------------------------------------------------------
# gimap_filtered <- gimap_dataset %>%
# gimap_filter()
## ----eval = FALSE-------------------------------------------------------------
# nrow(gimap_filtered$filtered_data$transformed_log2_cpm)
## ----eval = FALSE-------------------------------------------------------------
# str(gimap_filtered$filtered_data)
## ----eval = FALSE-------------------------------------------------------------
# nrow(gimap_filtered$filtered_data$transformed_log2_cpm)
## ----eval = FALSE-------------------------------------------------------------
# gimap_dataset <- gimap_filtered %>%
# gimap_annotate(cell_line = "PC9") %>%
# # Whatever is specified for "control_name" is what will be used to normalize other data points
# gimap_normalize(
# treatments = "drug_treatment",
# control_name = "pretreatment"
# ) %>%
# calc_gi()
## ----eval = FALSE-------------------------------------------------------------
# head(gimap_dataset$gi_scores)
## ----eval = FALSE-------------------------------------------------------------
# head(dplyr::arrange(gimap_dataset$gi_score, fdr))
## ----eval = FALSE-------------------------------------------------------------
# plot_exp_v_obs_scatter(gimap_dataset)
#
# # Save it to a file
# ggsave(file.path(output_dir, "exp_v_obs_scatter.png"))
## ----eval = FALSE-------------------------------------------------------------
# plot_rank_scatter(gimap_dataset)
#
# # Save it to a file
# ggsave(file.path(output_dir, "plot_rank_scatter.png"))
## ----eval = FALSE-------------------------------------------------------------
# plot_volcano(gimap_dataset)
#
# # Save it to a file
# ggsave(file.path(output_dir, "volcano_plot.png"))
## ----eval = FALSE-------------------------------------------------------------
# # "DUSP21_DUSP18" is top result so let's plot that
# plot_targets(gimap_dataset, target1 = "DUSP21", target2 = "DUSP18")
#
# # Save it to a file
# ggsave(file.path(output_dir, "DUSP21_DUSP18.png"))
## ----eval = FALSE-------------------------------------------------------------
# readr::write_tsv(gimap_dataset$gi_scores, file.path(output_dir, "gi_scores.tsv"))
## ----eval = FALSE-------------------------------------------------------------
# saveRDS(gimap_dataset, file.path(output_dir, "gimap_dataset_final_treatment.RDS"))
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.